
www.manaraa.com

Part

I
Introduction

Notes on the Synthesis of Context A novel approach to model context inالعنوان:
software engineering

.Al Shaikh, Ziyad Aالمؤلف الرئيسي:

Boughton, Clive(Super)مؤلفين آخرين:

2011التاريخ الميلادي:

كانبيراموقع:

185 - 1الصفحات:

:MD 616120رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

Australian National Universityالجامعة:

College of Engineering and Computer Scienceالكلية:

أسترالياالدولة:

Dissertationsقواعد المعلومات:

صناعة البرمجيات ، برامج الحاسبات الالكترونية ، هندسة البرمجيات ، النمذجة ، النظممواضيع:
الخبيرة

https://search.mandumah.com/Record/616120رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/616120


www.manaraa.com

Part

I
Introduction



www.manaraa.com



www.manaraa.com

Chapter

1
Overview

[N]eglect of context is the greatest single disaster which philosophic thinking

can incur.

John Dewey (1931)

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivation and research aim . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Part I - Introduction . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Part II - Contribution . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.3 Part III - Discussion and Conclusion . . . . . . . . . . . . . . 7

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . 8



www.manaraa.com

Chapter 1: Overview

1.1 Introduction

This dissertation is submitted for the degree of Doctor of Philosophy of the

Australian National University. It describes exploratory research on the funda-

mentals of software/system variation, its sources and implications, on the level

of requirements. The result of the research is a novel approach to analyse and

represent context in software engineering, with application to systems in general.

As an introduction, I provide a brief overview of main parts of the research,

supported by guiding information to navigate through the thesis. I conclude with

a list of work published during the project and a summary of contributions made

to engineering research and practice.

1.2 Motivation and research aim

The initial motivation for conducting this research is to explain sources of

software/system variety across different organisational goals, different disciplinary

approaches, cultural choices, and within personal preferences. In the spirit of the

dichotomy set by Simon [1996], as engineers, we are not primarily interested in

the knowledge of how the world works, we are more concerned with the knowledge

of making a working world. Therefore, we have to enquire about the nature of

the world of our artefacts. One challenging goal, in software development, is to

maintain a complete account of system requirements. For example, how to avoid

system failures as a result of lack of knowledge? How to take advantage of system

opportunities, manifested in customers’ desires and aspirations? These concerns

are summarised by Glass’s Law:

Requirements deficiencies are the prime cause of project failures.

[Endres and Rombach 2003, Law L1, pp16-17]

The research is also motivated by the growing interest in product line

architectures. In which the aim is to manage a variety of needs within a

family of products, while maintaining economical value and achieving sustainable

growth. My preliminary research reported in Chapter 2 shows that the source of

sustainable functionality of a successful system, lies in its ability to respond to its

context. This is summarised by Conway’s Law:

A system reflects the organisational structure that built it.

[Endres and Rombach 2003, Law L16, pp81-82].

4



www.manaraa.com

1.3 Thesis scope

Further research reported in Chapter 2 shows that context as a concept, has

not received enough theoretical distillation in software engineering. This is

exemplified in the different views by software practitioners about the use and

meaning of context on different levels of software development—requirements,

architecture, and design. After reviewing views and theories from the literature

dealing exclusively with the concept of context—literature from various fields of

knowledge: architecture and urban design, artificial intelligence, anthropology,

linguistics, philosophy—the need emerged for a synthesis of context as a separate

system concern in software analysis.

This preliminary work has resulted in the following research aim:

‘to present a model of context that shows when to vary and when not to

vary a system. Such a model should indicate the opportunity to vary the

system when the context reflects soft demands, and indicate when it is not

possible to vary the system because the context has strict demands. The

model should also indicate when strict demands are based on conjecture,

and when soft demands are based on strong evidence. The model should

show different degrees of variation that the system may have through

context.’

1.3 Thesis scope

The scope of this thesis is the development, representation, and demonstration of

the theoretical framework of context within software engineering requirements.

While the broader applicability of the contextual framework to other areas of

software development is discussed, the evaluation of the approach within these

areas is beyond the scope of this thesis.

The research on context presented here, have general application to human-

based systems. Some reference is made to the implication of the work on human-

based systems, but demonstrating or evaluating such implications are beyond the

scope of this research.

1.4 Thesis structure

Figure 1.1 shows the organisation structure of the thesis depicted in a Unified

Modelling Language (UML) activity diagram [Mellor and Balcer 2002]. The thesis

is organised in three parts, represented in the activity diagram with vertical lines,

5



www.manaraa.com

Chapter 1: Overview

Figure 1.1 – Activity diagram depicting the structure and the flow of ideas and results

throughout this thesis.

6



www.manaraa.com

1.4 Thesis structure

each part with more than one chapter. Chapters are represented as activities (grey

rounded boxes), flow of ideas and conclusions between chapters are represented

in arrows and key research contributions are represented by objects (white square

boxes).

In the following sections I provide an overview of the thesis with a summary

of the findings of each chapter. A more detailed overview of the main research

contributions is obtained by reading the introduction of Chapters 3–4 with the

conclusion of Chapter 6. A more concise overview of the thesis could also be

obtained by reading the preface.

1.4.1 Part I - Introduction

The first part of the thesis (Part I) is formed by two chapters: Chapter 1 and

Chapter 2. I present the thesis aim and motivation in this chapter, Chapter 1.

Preliminary research is discussed in Chapter 2. In which initial observations

leading to realise the need to explain system variety by modelling context is

presented. These observations were inspired by the work of Alexander [1964;

1979; 2002] on context and form, Dilley [1999], Scharfstein [1989] on the problem

of context, and the discussions of context and patterns in Buschmann et al. [2007].

The collection of ideas thereof, led to the conclusion that a synthesis of context

is required in software engineering, expressing risk imposed and opportunities

offered within the context of each system.

1.4.2 Part II - Contribution

The second part of the thesis (Part II) is formed by two chapters, Chapter 3

and Chapter 4. Chapter 3 discusses context on the level of individual elements,

using the Context Dynamics Matrix (CDM), a novel approach to model context.

Chapter 4 discusses context of individual elements within a system using Data

Flow Diagrams (DFD). CDM is used to enrich the context representation of system

elements’ contexts as represented by DFD.

1.4.3 Part III - Discussion and Conclusion

The third part (Part III) is formed by two chapters. The first chapter, Chapter 5,

is the proof-of-concept that describes an industrial case-study to demonstrate the

efficacy of the approach. The second chapter, Chapter 6, I summarise the work

presented in the thesis and present a survey of related work. I also discuss

7



www.manaraa.com

Chapter 1: Overview

limitations and propose future research directions to evaluate and further develop

the use of context in software engineering.

1.5 Publications

The contributions made by this thesis are based on the results of preliminary

research, some are presented in Chapter 2, and published in the following refereed

conference papers.

• Z. Alshaikh and C. Boughton. The Context Dynamics Matrix(CDM): An

Approach to Modelling Context. 16th Asia Pacific Software Engineering

Conference (APSEC 2009), 2009.

• Z. Alshaikh and C. Boughton. Context centralised method for software

architecture: A pattern evolution approach. In 3rd International Conference

on Software and Data Technologies (ICSOFT2008), 2008.

1.6 Summary of contributions

The research reported by this thesis makes the following contributions to the

existing knowledge of system and software development.

• A synthesis of context. A review of context in literature, produces a

synthesis of context as two dimensions: influence and perception. The

synthesis is based on five themes drawn from the literature that sets the

plan for the following chapters to represent the context of systems.

• Context models. A novel approach to synthesise and represent the context

of elements in terms of context states using CDM. The context synthesis

introduced in Chapter 2, is expanded by a force model of influence, and

a knowledge model of perception. Both models of context are represented

in CDM, which implies sources of system variation when applied to soft-

ware/system requirements.

• Context mapping. To represent the context of systems, the context states

of the CDM are mapped to the description of requirements using DFD. The

functional view that DFD represents is extended by context states. Thus it is

possible for analysts to represent the context of a system as represented by

requirement statements, through a context enriched DFD model.

8



www.manaraa.com

Chapter

2
Background

In analysis, something that we want to understand is first taken apart. In

synthesis, that which we want to understand is first identified as a part of

one or more larger systems.

In the second step of analysis, an effort is made to understand the behavior

of each part of a system is taken separately. In the second step of synthesis,

an effort is made to understand the function of the larger system(s) of the

which the whole is part.

In analysis, the understanding of the parts of the system to be understood is

then aggregated in effort to explain the behavior or properties of the whole.

In synthesis, the understanding of the larger containing system is then

disaggregated to identify the role or function of the system to be understood.

Ackoff [1999]

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Preliminary research . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 What is ‘context’? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Context in software . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Context in requirements . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Context in architecture . . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Context in design patterns and pattern language . . . . . . 24

2.5 Context in other disciplines . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Context as a problem . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Context as a solution . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.3 Context as form . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Synthesis of Context . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Themes from literature on context . . . . . . . . . . . . . . . 33



www.manaraa.com

Chapter 2: Background

2.6.2 The emergence of influence and perception . . . . . . . . . . 36

2.7 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . 37

10



www.manaraa.com

2.1 Introduction

2.1 Introduction

I introduce early attempts to explain sources of system variety, which started

by conducting preliminary research, followed by a literature review on context,

which led finally to providing a synthesis of views from the literature. Preliminary

research was conducted by way of a thought experiment concerning different

ways to vary a satellite system. The experiment led me to recognise that within

every system’s context there exists degrees of influence that either impose certain

conditions as imperatives, or vary the system because the influence provides

choices. Because the source of such influences is the context of the system, a

literature review was conducted on the current state of thinking on ‘context,’

in software engineering, and other disciplines areas. The review confirms the

importance of context to model requirements, and to shape software architecture

and design. Other disciplines, such as building architecture, have pointed out that

context is the source of forces that shape architecture form. But the literature

review has also exposed some views that point to the importance of perception as

another dimension of context. This led to conclude that there is a need to synthesise

both views, and use them to expose different levels of influence and perception to

explain when it is possible to vary the system and when it is not. Thus, the last

section of this chapter formulates a conjecture that summarises this novel thinking

about ‘context,’ which becomes the basis for the work developed in later chapters.

2.2 Preliminary research

A system reflects the organisational structure that built it.

Conway’s Law [Endres and Rombach 2003, Law L16, pp81-82]

As part of the preliminary research, a thought experiment was conducted on

how to vary the architecture of a satellite system. Conducting the experiment was

motivated by the need to explain why systems vary on the level of requirements

and architecture. The experiment builds on knowledge obtained from previous

research [Alshaikh 2006], where three satellite system examples were explored to

extract a unified model. A unified model is represented in The Unified Modelling

Language (UML) that represents similarities among selected systems, which are

also modelled in UML. But unified models do not represent variety, as they only

capture similarities. Thus, the thought experiment to explore similarities as well

as differences, similarities as imperatives and differences as variations. The aim

of the thought experiment was to explore those imperative elements among all

11



www.manaraa.com

Chapter 2: Background

satellite systems to understand why they share those particular elements, and

consequently, why they vary. Thus, imperative elements are elements that cannot

be changed, representing a source of limited variation, and optional elements that

can be changed represent sources of variation.

In exploring different ways a satellite system may vary, one imperative

element that emerges is that each system is separated into a ground system

and a flight system. This separation is a key attribute of every satellite system.

The system may vary based on orbit: low-earth-orbit (LEO), micro-satellites,

geostationary, deep-space-missions; based on missions: remote sensing, space

imaging, space exploratory missions; but what remains unchanged within each of

the aforementioned variations is the separation into a ground system and a flight

system.

Given this imperative element, is it possible to identify an imperative archi-

tecture as well? Put another way, what are the requirements and architecture

elements that are chosen and other elements that are imposed as a result of this

element? In the thought experiment, choices always seem to lead to one variant of

a client-server style.

Because the satellite is separated from the ground station, the separation

becomes a requirement/constraint that cannot be changed. But what is the source

of such requirement? Such a requirement is derived from the nature of the system

itself, and from the conditions that govern its operations. Unlike other elements

that the system may share with other systems, if the element of separation is

changed, the system would cease to be a satellite system.

But not all systems have the same imperative. In an inventory tracking

system, for example, it is possible to vary the architecture across different styles

following the variation of all possible systems. The system could follow one

variant of a client-server style—an online system—or choose a completely different

style such as a purely layered architecture. The difference between the satellite

system and the inventory tracking system, is that a satellite system is linked

to a fixed imperative element that cannot be changed—that is, the separation

between ground station and the flight system. But for the inventory tracking

system, conceptually, there is not a similar limitation that applies to all systems

of that same domain. Unlike satellite operations, ‘tracking inventory’ is largely

irrelevant to the physical conditions in which it operates. This does not mean that

the inventory tracking system is not exposed to influencing factors/forces that are

specific to its local environment that might lead to a specific architecture style. A

remote inventory tracking system, for example, is similar to the satellite system,

because both operate remotely. As a result, imperatives can also vary within

12



www.manaraa.com

2.2 Preliminary research

the same system types, such as moving from a local tracking system to a remote

tracking system, or from a geostationary satellite to a low-earth-satellite systems.

Comparing the satellite system and the inventory tracking system suggests

that both have different system narratives. A narrative describes the system’s

conditions, aim, environment, and so on. But within each narrative it is possible

to identify an imperative element that cannot be changed. Therefore, the source of

this imperative element is the system narrative, or alternatively, its context.

By following the thought experiment on the satellite system, changing the

narrative every time meant that the context was changed. Each time the context

is changed, the system may have a different imposing element, at the level of

requirements, system structure, and so on. As a result, within each context there

are differences between each context and the other. Such differences are the main

source of variation. Therefore, a system may vary depending on how its context

allows it to vary. Then the ability to vary system needs or structure is directly

related to the degree of influence each context imposes on the system. The thought

experiment, then, leads to the following observation:

The choice of a system’s requirements and architecture is limited by the

‘degree of influence’ a context has on the system.

But further analysis of the satellite system revealed another aspect, that

context also changes over time. The satellite system has two different contexts,

before the satellite’s launch and after its launch. Looking at both contexts as part

of one larger context would mean that the larger context has two states. Within

the larger context, even before launch, the satellite is separated from any system

that may communicate with it as a ground system, thus the element of separation

does not change. But it is possible to identify elements that become imperative

only after the satellite system is launched, not before, such as the satellite’s orbit.

The satellite’s orbit is decided before the launch of the satellite as part of designing

the mission, in which some satellites will not be able to change their orbit after

launch. But because the satellite is not in orbit, it could be changed at anytime. For

example, a low-earth-orbit (LEO) satellite leaves each ground station a relatively

short communication window to connect to it as it orbits the earth several times

a day. Therefore, when the orbit of the satellite is chosen and the satellite is

launched, its orbit cannot be changed, thereby adding a new imperative. What

this means is, that context elements may behave within predictive states, where

in one state it does not influence the system strongly, but as it changes state its

influence on the system starts to change as well.

The thought experiment leads to two main conclusions:

13



www.manaraa.com

Chapter 2: Background

• That systems are the result of their context. But they owe their ability to

vary, to the degree of influence that their context exerts in different states.

• That systems may vary over time as the state of influence of their context

changes. Therefore modelling the behaviour of a system context, by modelling

states of influences, offers system analysts a way to plan how to vary systems

ahead of time.

2.3 What is ‘context’?

. . . don’t ask for meaning, ask for the use.

Wittgenstein [1974]

The word context originates from the Latin verb contexere that means to weave

together. Weaving together directs the attention to an important aspect of the

meaning of context, that context weaves elements. Therefore, other related terms

are typically used: environment, circumstances, conditions, state of affairs, setting,

frame of reference, and factors. But if context by definition means ‘other things,’

then how do things move from being in context to be out of context?

Scharfstein [1989] provides a definition and a solution at the same time by

defining context as: “that which environs the object of our interest and helps by its

relevance to explain it.” By this definition, Scharfstein distinguishes three elements

of any context: an object, relevance, and purpose (to explain). Therefore, elements

move in and out of context in relation to each other. Therefore, context according to

Scharfstein is relational within a specific purpose: to explain, to describe, to design,

and so on. But by using the word ‘environ,’ the definition does not limit context to

specific types of elements, either tangible or abstract. Context, then, is still open

to a wide range of possible elements/circumstances.

Similarly, Alexander [1964] recognised that the context of an ensemble is an

element of design that cannot be fully described, because attempting to produce

a full description of context is an endless task. But Alexander approaches this

problem by limiting context by force. According to Alexander, what is relevant

is the ‘force’ (influence) of the context on an object of design. The result of this

‘force’ is undesired outcomes, or what he calls misfits. Alexander is not concerned

with the definition of context per se, similar to Wittgenstein’s (1974) approach that

emphasises the use of context instead of asking what it means; Alexander is rather

concerned with the effect(s) of context.

By comparing Alexander’s approach to Scharfstein’s, they agree that context

14



www.manaraa.com

2.3 What is ‘context’?

has to be limited for analysis. To Alexander, what is relevant to ‘form,’ is context

and its ‘force’ causing ‘stress’ on the ensemble, to Scharfstein, it is explanation.

Both definitions, however, create serious difficulties in approaching the concept of

context. Alexander through ‘force’ ties context closely to ‘form’ thereby creating

a duality between context and form—Alexander refers to it as context-form.

Scharfstein definition, on the other hand, leads to relativism, which at its extreme,

does not help to explain anything [Scharfstein 1989].

Other approaches have recognised the importance to limit context, but they

have tended to apply very stringent limits. Dey [2001], in context-aware systems

for example, limits context to ‘information’. In linguistics, Halliday [1977] divides

context into three elements: field (e.g., activities), tenor in the form of the relation

between participants, and mode (e.g., written or spoken). Based on this model, Hal-

liday founded the Systematic Functional Linguistics (FSM) approach to semantic

analysis. Fetzer [2004] provides a sociocultural definition of context comprised of

individuals’ physical, physiological placement, knowledge, and intention. Goodwin

and Duranti [1992] follow a similar approach in anthropology, where context is

divided into elements: the setting or the physical world, knowledge, language, and

non-verbal signs. In all of these approaches context is a reflection of the concerns

of the discipline (linguistics, anthropology, and so on).

So what is left out of the analysis when context is limited by such parameters?

According to Ackoff [1999], system problems in the real world are not solved by

any single discipline. Thus such approaches that limit context by the discipline

promote building artificial boundaries that do not exist in reality. Therefore, van

Dijk [2008] recognises that context should become a multi-disciplinary problem.

Therefore, what the definition of Scharfstein [1989] and Alexander [1964] suggest,

is that context is a product of relevance. That is, whatever is part of the problem

should become part of the context, and should be included in the solution. If the

objective is to understand, then context is whatever provides an explanation; if

our objective is to design, then context is whatever results in comfort, robustness,

safety, and so on.

What I mean by ‘whatever,’ is that context cannot be listed by fixed elements.

Thus, context is not only in the elements themselves that surround an object of

interest, manifested in its attributes, but what happens as a product of two or

more elements. Consider the example of an architect that plans to design a house

near a tree. If the architect holds the view that the context is what surrounds

the object of interest, in this case the house, he/she might only consider what is

relevant to the house, what helps to make the house feel better, the view from

inside more pleasing, and so on. But if the designer holds the view that the context

is the product of the house and the tree together, the aim of designing that part of

15



www.manaraa.com

Chapter 2: Background

the house beside the tree will change. The design will not only be concerned with

how the house looks beside the the tree, but how the tree looks beside the house

as well, how the house and the tree enhance each other’s beauty. This way the

architect needs to consider the attributes of both elements of the design and how

they interact when they are put together. An architect can consider the house only,

but the result is very likely less satisfactory.

From the views introduced about context so far, it is possible to recognise

that context is either without clear limits, or over limited by preconceived views.

Without a limit to context, context becomes ‘a theory of everything’ [Dijk 2009],

and with a strict limit it becomes a special theory that only represents part of

reality. My answer, then, to the question ‘what is context?’ is to provide a model

to represent context, rather than a theory to explain it. A model that provides a

way to describe how and when things move in and out of context. Such a model

of context should not provide descriptions based on relevance alone, but based on

significance. It should also guide us to use ‘context’ effectively, regardless of the

question of meaning.

2.4 Context in software

In software engineering, little attention is directed to provide a formal definition of

context beyond the synonyms introduced earlier. Thus the discipline’s approach to

context may be interpreted by examining how modelling approaches used context

to solve system problems. By examining modelling approaches two themes could be

identified: realising context as the boundary of the system, and realising context as

common-sensical. Therefore, following Wittgenstein’s advice, to ask about the use

not the meaning; a survey is presented on the use of context in current approaches

to software development, on the level of requirements, architecture and design.

2.4.1 Context in requirements

Context in early requirements approaches is typically associated with the task

of setting system boundaries, but in later approaches context became identified

through the narrative of scenario-based requirements. In setting system bound-

aries, the term ‘context’ is used explicitly to develop context diagrams in structured

analysis approaches, for example. Later, with the emergence of object orientated

analysis approaches, the use of the term ‘context’ became less common. But

context as a concept, continued to be used implicitly within the the scenario-based

requirements, or what could be identified, following Scharfstein [1989], as a

16



www.manaraa.com

2.4 Context in software

Abstractionism Contextualism

Role of description Abstractions are power-

ful and general

Particularities are as in-

formative as generalities

Design criteria Design integrity Contextual fit

Origin of requirements Prescriptive recommen-

dations

Current practice

Role of users Management End-users

Community of practice RE and software engi-

neering

Computer Supported Co-

operative Work (CSCW)

and Human Computer

Interaction (HCI)

Table 2.1 – Key discriminators between abstractionism and contextualism by Potts

and Hsi [1997].

common-sense approach to context.

Similar to what Scharfstein [1989] suggests, that we are more able to un-

derstanding context in practice rather than theory. The scenario-based approach

does not formally recognise the aim of identifying the context of the system as

its aim, analysts may resort to their common-sense instead to from a sufficient

understanding of the context. Efforts, nonetheless, remained directed towards

identifying contextual requirements formally. For example, Potts and Hsi [1997]

show differences between abstraction approaches and contextual approaches—as

Table 2.1 shows—and call for a synthesis between the two approaches, combining

the best features of both.

In what follows a review of the early uses of the term context in structured

analysis, as part of setting system boundaries, are reviewed. This is followed by a

review of the common-sense approach to context that became popular in last two

decades.

Context as boundaries

The work of DeMarco [1979] is perhaps the first explicit use of context, as a

concept, in software requirements. By setting the boundary of the system as its

context, DeMarco’s approach abstracts data inputs and outputs, and represents

data flow going through a series of processes, which ultimately forms a Data

17



www.manaraa.com

Chapter 2: Background

Figure 2.1 – A DFD context-diagram of a satellite system.

Flow Diagram (DFD). The set of data, data flow, and data processes, help to

understand the interconnected processes/processing at different levels within a

system. The approach depicts a high level view of the system in the context

diagram—representing level zero—by identifying the scope and boundary of the

system, and the system’s interaction with external entities. Figure 2.1 shows

an example of a DFD context-diagram of a satellite system interacting with the

ground system as its external entity. The process of identifying boundaries and

managing scope is a difficult task that demands a series of refinements and

revisions with the involvement of stakeholders [Yourdon 1989]. It is the purpose of

the context diagram to show relevant system terminators or external entities that

interact with the system, and show data flow between the system and the external

entities.

In order to focus on identifying important processes and data flow within

DFDs, the context diagram does not include any information that either indicates

the frequency of interaction between the system and an external entity, or

the size/amount of data being transferred that has an effect on the quality of

service. Hence the context diagram is a device for setting system boundaries and

identifying interacting external entities, ignoring any other requirements related

to quality or constraints. In some cases, to understand the context diagram

better, an event list is constructed to better describe stimuli and responses of

the system, allowing a more dynamic view. Real-time extensions to DeMarco’s

approach were made separately by Ward and Mellor [1986] and Hatley and Pirbhai

[1988], whereby, for the latter, the concept of response times was included with

the frequency of system inputs and outputs. Both extensions include the concept

of event/control flows as separate from data flows. Both methods, however, also

retained the context diagram, but with the inclusion of event/control flows.

But the use of context diagrams is not limited to representing data flow.

Jackson [1995b] uses context diagrams to describe the relationship between the

‘machine’ (system) and the ‘world’ or the application domain. Unlike DeMarco’s

18



www.manaraa.com

2.4 Context in software

context diagram, Jackson’s diagram does not show any description of the inter-

action(s) between the system and other elements within the application domain.

But beyond the representation of context as boundaries in the simple sense,

Jackson expresses his understanding of context by using the example of building a

bridge. In the bridge example, Jackson describes the importance of understanding

the problem domain (context), where the engineer is able to see and feel the

environment directly:

You’re an engineer planning to build a bridge across a river. So you visit the

site. Standing on one bank of the river, you look at the surrounding land, and

at the river traffic. You feel how exposed the place is, and how hard the wind

is blowing and how fast the river is running. You look at the bank and wonder

what faults a geological survey will show up in the rocky terrain. You picture

to yourself the bridge that you are going to build [. . . ] [Jackson 1995b]

Yet, Jackson points out that the context is not the problem but what surrounds

the problem. However, he does not discuss what should be considered as part of the

context and what should be excluded. Alternatively, Jackson extends the context

diagram using problem frames. Problem frames, here, are similar to extending the

context diagram by processes in the DFD approach. The use of ‘frames,’ is also

common as another term used to mean context, as in the work of Goffman [1975]

in sociology, for example. Accordingly, Jackson starts from the problem domain to

appreciate the context as a whole, then begins to limit the context by using frames,

capturing relevant elements to the problem and application, but on the way, points

to certain difficulties:

The difficulty arises from the relationship between the machine and the world.

The machine will furnish the solution, but the problem is in the world.

Discourse about the problem must therefore be a discourse about the world and

about the requirement that our customer has in the world. Since the world is

very multifarious we should expect to find that there are many different kinds

of problem. Controlling an elevator is not at all like compiling source programs,

which in turn is not at all like switching telephone calls; and none of them is

like processing texts in a word processor. Jackson [1995a]

Jackson [1995a], then, expresses clearly that the problems of the world are

different, in structure and in behaviour, from the problems of the machine. This

is why, Jackson explains, we need domain experts. The use of problem frames

and the concept of machine-world of the application’s context, represent a serious

attempt to address the issue of context, as a separate element within the process

of system development, extended further to design within a larger framework, see

for example Hall et al. [2008].

19



www.manaraa.com

Chapter 2: Background

Boundary Common sense

Terminology Is the term ‘context’ used?

Only at the beginning of the

analysis.

Does not use the term.

Layers Is context layered?

Represents context in terms of

layers.

Does not describe the system in

layers.

Relations Is context connected?

Maintains related elements

connected.

Does not connect its elements

formally.

Table 2.2 – A summary comparison between the boundary approach and common

sense approach to context.

In Object Oriented Analysis (OOA), use-cases describe a sequence of in-

teractions between the system and external entities as actors [Wiegers 2003].

Even when the term ‘context’ is not used, similar to context diagrams, use-cases

represent interactions between the system, as internal entities, and its context,

as external entities. The same concept of the interaction between internal and

external system elements underlies most approaches to system analysis.

For example, Executable UML [Mellor and Balcer 2002] uses a similar

approach in sequence diagrams and collaboration diagrams. Unlike the (DFD)

context diagram, however, sequence diagrams and collaboration diagrams are not

used in the early stages of analysis, but rather in conjunction with the more

detailed system/class state models [Mellor and Balcer 2002]. The driving force to

adapt this method is the need to understand what the user intends to do with the

system, rather than asking for what the user wants or receives from the system

[Wiegers 2003]. Thus, focusing on the user is part of the user centred design

approach, first introduced in Norman and Draper [1986], and later elaborated by

Norman [1988]. Unlike Jackson’s (1995b) focus on the world and the machine as

the context, user centred design shifts the context to the user. The analyst is no

longer interested in the external world only, but also in the internal world of users,

their intensions, their emotions [Norman 2005], and mainly their mental model

[Norman 1988].

20



www.manaraa.com

2.4 Context in software

Context as common-sense

Due to the focus on the user the common-sense approach to context emerged.

Within such an approach requirements are described in a narrative that focuses on

the user’s interaction with the system. In such a narrative, context is not identified

explicitly, but by relating to the user’s situation, to which the analyst is able to

relate.

For example, Potts [1995] links user intentions to organisation goals using

scenarios. Thus, the scenarios’ narrative captures user intentions within indi-

vidual tasks to achieve the system aim. Each scenario has a description of a

single instance of an interaction with the system [Wiegers 2003]. According to

Wiegers [2003], describing user aims and intentions, rather than what is needed

from the system, is a response to the need for designing software to enhance

usability. Similar to Jackson’s (1995b) bridge analogy, where the engineer imagines

the bridge to be part of the scene, the analyst using scenarios can also imagine the

users’ situation. Such an approach transcribes local system contexts onto the level

of users.

The scenario-based technique is used also to describe non-functional require-

ments, where the concern about users actions is replaced by the concern about

quality attributes. For example, quality scenarios by Bass et al. [2003] use

general and concrete scenarios to describe non-functional requirements. In general

scenarios the narrative does not relate to a specific system. For instance, a

general scenario may be to secure data from unauthorised users. To make the

scenario concrete, the scenario must specify which data and which level of security.

For example, a general scenario might state that ‘financial transactions must be

fully secured,’ a concrete scenario, however, would state that ‘credit card details

must be secured from all users 99% of the time’. When analysts move from a

general to a concrete scenario they have to provide additional information about

the specific context where a function or a task is performed. The implications of

such information, with other similar statements, is left to the reader’s judgement

to decide how it may influence system decisions.

Although scenarios-based techniques are widely adapted by a number of

approaches [Bengtsson and Bosch 1998, Gheorghita et al. 2009, Kazman et al.

1994; 2000], they represent techniques that address narrow system concerns,

and lack uniformity. For example, Ralyté et al. [2010] argues that one scenario

approach is not enough, and recommends to integrate multiple scenario-based

methods to enhance their ability to represent multiple concerns. Another example

is the work by Kazman et al. [2005] that introduces an approach to select the

appropriate architecture scenario-based approach from a wide range of choices.

21



www.manaraa.com

Chapter 2: Background

Finally, Table 2.2 shows a summary of the comparison between context as

boundaries and as common-sense. Each point is discussed as follows:

• In structured analysis techniques, context is not limited to the beginning of

analysis. It is used to set system boundaries at the start of system analysis,

but continues to be used for the rest of the analysis without using the term

‘context’. For example, when the context-diagram is depicted to build a DFD

diagram, it represents all that is relevant to the problem at hand. To obtain

further detail, the context-diagram is decomposed into a set of processes each

of which influenced by some element of the system context. Each individual

process that emerges as a result of the composition, sets its own boundary

with other processes of the same level. The break-down of processes continues

for several levels.

• In the boundary approach, as in DFDs, the system is represented in terms

of layers. But the common-sense approach does not recognise context levels

when scenarios are used. The only example of layered scenarios is the use

of general and concrete scenarios. But general and concrete scenarios do not

represent two layers of context, but rather two degrees of abstraction.

• The boundary approach to context represents connected system elements,

as in processes in DFD. But the common-sense approach does not focus on

connecting its elements, as in scenario-based requirements. Each scenario,

in principle, maintains its autonomy, and may be enhanced by specific

techniques to connect scenarios.

2.4.2 Context in architecture

A number of approaches to software architecture realise context, but without

necessarily adopting the term, such as: Architecture Tradeoff Analysis Method

(ATAM) [Kazman et al. 2000] and Attribute Driven Design (ADD) [Wojcik et al.

2006] among others. But it is possible to classify the use of context in architecture

in two forms: context as state, context as boundaries.

Context as state in software architecture is realised when an architecture is

either already decided or exists in a running system. According to Kazman et al.

[2005] the context of an architecture is derived from three elements: organisational

goals, the system state, and constraints. In the review of software architecture

analysis methods, Kazman et al. stress the importance of realising context as

the first criteria for choosing a software architecture analysis method. Although

not identified by Kazman et al. in this manner, the context of an architecture is

derived as a state based on the three elements combined. Thus, an analyst must

22



www.manaraa.com

2.4 Context in software

examine the state of the context of the system’s architecture before choosing an

analysis method. For example, if an architecture is chosen as a result of a specific

constraint, the state of the context changes as the constraint is removed.

Context as boundaries are identified in the traditional sense similar to what

is defined by the structured analysis approach, or by defining what is relevant

to the architecture in general by setting a conceptual boundary. Bosch [2000]

recognises context as boundaries in the traditional sense. Where the context is

identified for an architecture the form of interfaces between internal and external

entities. Whereby context plays a role in defining functional and non-functional

requirements for each architecture interface. This is similar to context-diagrams,

where the system is defined by a boundary in relation to external entities. Another

approach is to define what is relevant to the architecture by setting conceptual

boundaries. For example, the context of software architecture requirements is set

according to quality. Bass et al. [2006] only recognise requirements that have an

impact on quality. This approach sets a boundary based on the concept that what

is relevant to architecture is to achieve quality. As a result, the concept is used

to decide what to include and exclude as part of the analysis. An architect then

uses this concept and selects from requirements what elements fit a predefined

classification. But it is not clear how to determine when a requirement is or is

not significant. According to Bass et al. [2006] determining such requirements are

based on experience and judgment.

There are efforts in the area of software architecture that arrive at more precise

characterisation of what is relevant to the context of architecture. For example,

Bass et al. [2006] suggests the following classification of system elements that

have architecture significance: a) quality attributes; b) volume of functionality;

c) similar requirements for a family of related systems; d) choice of technologies;

and e) deployment and operations. It is possible to consider this classification as

a start to move away form the concept of setting system boundaries to a more

property type classification. In an attempt to identify common sources of influence

within the architecture context, further work by Bass et al. [2008], Kazman and

Bass [2005] seek to identify common quality attribute scenarios in relation to

business goals empirically. Although the study of Bass et al. [2008] failed to find

a correlation between system domains and identified quality attributes, the study

represents an important attempt to categorise the context of architecture based on

empirical data.

Some representations of architecture context still use traditional analysis

artefacts, such as the context information diagram [Taylor et al. 2010] and system

context diagram [Fairbanks 2010]. But other approaches represented context

elements differently. Bruin et al. [2002] use feature-solution graphs (FS-graph) to

23



www.manaraa.com

Chapter 2: Background

represent architecture knowledge. The FS-graph combines two spaces: a feature

space and a solution space. The graph represents architecture knowledge as

connections based on stakeholders’ views, in which the latter is (part of) the con-

text. Another approach is presented by Clements et al. [2002] using utility-trees.

Utility-trees capture important quality attributes and architecture risks according

to stakeholders’ classification under the guidance of system developers. Developers

use utility trees to capture stakeholders’ decisions while applying the ATAM

approach. A utility tree assigns to each quality attribute, concrete quality attribute

scenarios. Stakeholders prioritise each scenario according to two dimensions:

importance level, and perceived risk of achieving the scenario.

Both FS-graphs [Bruin et al. 2002] and utility-trees [Clements et al. 2002],

represent a significant departure from traditional system analysis methods. Both

approaches capture contextual knowledge of the system and part of the application

domain—Bass et al. [2008], Kazman and Bass [2005], for example, used data

obtained from architecture evaluations using utility trees in their study of quality

attributes and system goals. But both approaches are narrowly focused. For

example, utility-trees only focus on quality attributes without extending the focus

to the other five areas identified by Bass et al. [2006]—that is, constrains and

similar requirements. The success of utility-trees should promote using them for

concerns other than quality attributes.

2.4.3 Context in design patterns and pattern language

Design patterns are based on building patterns introduced by Christopher Alexan-

der [1977], deriving a language for design from common designs of houses and

cities. The concept of context and its relation to patterns is borrowed largely from

Alexander et al. [1977]. But software patterns have not matured enough to form

a complete pattern language that developers can use to design software systems

completely based on patterns [Gamma et al. 1994]. In a speech addressing the

patterns community, Alexander [1999] mentioned that design patterns of software

lack two attributes: they do not work together to solve multiple design problems,

and they do not aim to improve human life. While the latter is improved by the

recent developments in the use of patterns in usability, see for example Dearden

and Finlay [2006], the former remains a challenging issue—see for example John

et al. [2009] on the failure of integrating a detailed pattern representation to an

overarching architecture in an industry context.

Although each building architecture pattern by Alexander et al. [1977] has

included a description of the context before introducing the pattern, this strategy

was not followed in determining software patterns. For example, patterns by

24



www.manaraa.com

2.4 Context in software

Gamma et al. [1994] replace context by stating intent and motivation. Buschmann

et al. [1996] introduce a pattern through a short sentence as the context of the

pattern, then describe the problem. For example, in the pipe-and-filter pattern,

Buschmann et al. [1996] summarise the pattern’s context in a single sentence as:

‘processing data streams,’ followed by an example. Both approaches seem to share

the same concept, that the pattern’s context is manifested in its goal, based on how

the designer intends to use it.

Recently more attention is given to rethinking the role of ‘context’ in patterns.

Buschmann et al. [2007] argue that context descriptions must be precise, and

designers must avoid general descriptions that can be easily omitted. Buschmann

et al. gives the BRIDGE pattern as an example of how designers apply it to the

wrong context as a result of an imprecise context description. Buschmann et al.

[2007] also discuss the problem of context in relation to a pattern, whether context

is part of a pattern or not. This discussion seems to be a boundary issue similar to

what analysts would make when they draw a context-diagram, the question then

becomes what is part of the system and what is not. But to follow the concept of

a pattern language by Alexander et al. [1977], the context of a pattern should be

another pattern within the language, or a choice of patterns.

Alexander [1979] points out that patterns do not exist without a pattern

language. In which the whole, represented by the language, gives meaning and

purpose to the part [Alexander 2002]. The context of a pattern then is the system

as a whole, or other patterns within the design. Smaller patterns should be

integrated with larger patterns within a pattern language. Instead of describing

the context of patterns, Alexander’s approach models context by other patterns.

This is exemplified at the start of each pattern in Alexander et al. [1977], where

each pattern refers to other patterns that may be used by it. The structure of the

language is formed such that smaller patterns fit within larger patterns—the order

of patterns in Alexander et al. [1977] is nested, starting from larger to smaller

patterns, thus emphasising this concept.

Recently, some observations have been made on the level of detail needed to

describe a pattern in relation to its context, which confirms the recommendations

made by Alexander et al. [1977]. For example, John et al. [2009] observes that

even if a pattern is identified, it is not possible to ignore other components within

the larger context that influence or are influenced by how the pattern is to be

structured, even if those components are not essential to the pattern:

Although a particular UML diagram can be drawn, doing so necessitates

depicting and arranging components other than those that are essential to the

pattern and thereby impose themselves on the architecture designer. [John

et al. 2009]

25



www.manaraa.com

Chapter 2: Background

Therefore, the implementation of a pattern is limited by the level of description

detail. As long as the pattern is described for a particular context, the more the

pattern fits a particular context, harder it becomes to apply without modifying it.

Gamma and Beck [2010] make a similar observation on patterns’ density:

Designs with high pattern density are easier to use but harder to change.

We have found that such a high pattern density around key abstractions is

common for mature frameworks. The opposite should be true of immature

frameworks—they should have low pattern density. Once you discover what

problem you are really solving, then you can begin to “compress” the solution,

leading to a denser and denser field of patterns where they provide leverage.

[Gamma and Beck 2010]

The concept of context in patterns and pattern languages is limited to single

patterns, manifested in each pattern’s description. The observations of Gamma

and Beck [2010] and John et al. [2009] suggest that implemented systems have a

significant influence on the implementation of patterns. They also suggest that the

context of a pattern is both external in the form of purpose, and internal in terms of

system’s components, which forms a mix of a system of patterns and non-patterns

elements. Thereby, it is important to regard context more fundamentally when

addressing design problems. To answer the question posed by Buschmann et al.

[2007]—whether context is part of the pattern or not—context is both part of the

pattern and is the pattern. Context is all there is.

2.5 Context in other disciplines

Morris [1999] comments on Scharfstein’s (1989) definition—context “that which

environs the object of our interest and helps by its relevance to explain it”—that

context goes beyond meaning in the simple sense of the word, to the extent that

the traditional delimitation between analysis and interpretation is broken.

Context manifests itself in many fields of knowledge, with varying prominence.

A number of approaches recognise context not only as a problem, but also as

a solution. In one sense, context regresses endlessly posing a challenge to the

intellect, in another, it is rather natural and we are more able to use and

deal with it in practice than in theory [Scharfstein 1989]. In anthropology for

example, understanding phenomena through social and situational context led to a

paradigm shift in the discipline [Scharfstein 1989]. Another similar shift resulted

from the challenge against the universalistic nature of evolutionary theories in

the late nineteenth century and early twentieth century [Scharfstein 1989]. In

linguistics, the acceptance of the pervasive nature of context-sensitivity in natural

26



www.manaraa.com

2.5 Context in other disciplines

language created a movement that opposed the view of language as a formal system

represented in context-free grammars [Dilley 1999]. The movement led to formal

semantics, which as Recanati [2004] puts it: “. . . [is] a very active discipline whose

stunning development in the last quarter of the twentieth century changed the face

of linguistics”.

Although the concept of context demonstrated an important role in the devel-

opment of several fields of study, embracing the concept itself, as will be shown

in sections to follow, comes with difficulties of its own. Therefore, a discussion is

presented from a number of disciplines that focus primarily on context as a course

of study. The discussion first starts by exploring context as a problem, then context

as a solution, and finally context as ‘form.’

2.5.1 Context as a problem

The problem of context, according to Scharfstein [1989], lies in the intellectual

burden that it puts on one’s comprehension capacity. A burden so heavy, it destroys

the understanding it is supposed to enhance. Dilley [1999] points out that context,

in its own right, is difficult. It is linked to equally problematic issues, like ‘meaning’

and ‘interpretation’. Another aspect of the problem stems from the fact that context

is both an abstract and general concept, shared by multiple disciplines, making a

complete theory of context is a transdisciplinary enterprise [Strathern 1987]. Thus,

the problem of context is addressed according to three main analytical difficulties:

the regression of context, the shell problem, and the problem of relevance.

The problem of regression: regression is the result of attempting to con-

textualise an element through other elements that are also contextualised by

other elements, in which this contextualisation process continues indefinitely. For

example, Harvey [1999] came to realise, in analysing the immediate social context

of linguistic interaction, that questions about origin/identity (who people were),

questions about utterances (what is being said and in what language), and the

situational setting (what is the occasion), were outcomes with prior origins, not

starting points. Harvey explains the complexity of such an analysis in a bilingual

culture, in which one language implicitly stands as the context for the other,

forming an implicit context, leading to context regression.

In social science, there are three approaches to the regression of meaning

outlined by Dilley [1999]: external context, internal context, and a mental context.

External context regresses outwardly, where meaning is obtained from the external

world. Internal context is based on language or text being the source of meaning,

and that nothing exists outside of text. Mental context exists in the mind, as part

27



www.manaraa.com

Chapter 2: Background

of an internal intention or a psychological state. It is possible to regard abstract

ideas as part of this context. But none of these approaches—or as Dilley [1999] calls

them contextual moves—provide a solution to the regression problem. In each of

these approaches/theories, arguments are made to limit context either internally

or externally. For example, when Derrida [1998] states that ‘nothing exists outside

of the text,’ he excludes the influence of the external world. Because the producer

of text is separated from the text itself, Derrida argues that the producer cannot

be replaced by any interpretation or reasoning of our making in the producer’s

absence. The result is a closed system of text. That is, text always refers to other

texts, and truth and meaning only exists within the text. For example, typically in

order to know about the producer in a way to know more about the context of the

text, the knowledge is obtained from other textual sources: memoirs, other texts

produced by the same producer, and so on. Any meaning derived from outside the

text itself is doubtful. With this argument, Derrida has delimited context from

regressing externally to the world, to regress internally in the text.

The shell problem: is the result of attempting to be thorough in understanding

context. Thereby leading to total contextualisation, where everything becomes

the context of everything else. In this case a ‘twist’ of context occurs, where the

parameters of the problem are turned inside out [Scharfstein 1989]. This issue

is referred to as the shell problem. The shell problem results from the context

becoming the new problem, while the old problem, or its contents, become the

new shell or context [Dilley 1999]. In interpreting text, for instance, a similar

problem occurs—in what is known, according to Ricoeur in [Dilley 1999], as the

hermeneutic circle—where starting from the text to understand the context leads

to using the context to understand the text. Text is bounded by meaning and

meaning is bounded by context, yet context is boundless. Whereby any definition of

context can itself be contextualised by means of a new context, and the process is

open to infinite regression [Dilley 1999].

The problem of relevance: Scharfstein [1989] draws our attention to the issue

of relativism, as another philosophical difficulty resulting from the reliance on

context. The dependence on context is a kind of limited relativism, whereas

relativism, itself, is hard to limit, referred to as the ‘unboundedness of context’

[Dilley 1999]. Contextualism leads to extreme relativity, which consequently leads

to extreme individualism [Scharfstein 1989]. By recognising that each individual

case has a unique context, it is possible to justify anything.

But the use of relativism relates to limiting context in a way other than limiting

its regression. According to Culler [2009], relevance limits the contents of context,

28



www.manaraa.com

2.5 Context in other disciplines

since context’s contents have no limit. Culler gives examples of major shifts in

reading literary texts as a result of redefining what is relevant:

Major shifts in the interpretation of literature brought about by theoretical

discourse might, in fact, be thought of as the result of the widening or

redescription of context. For example, Toni Morrison argues that American

literature has been deeply marked by the often unacknowledged historical

presence of slavery, and that this literature’s engagement with freedom

[. . . ] should be read in the context of enslavement, from which they take

significance. [Culler 2009, pp92]

The problem, then, becomes how to identify what is significantly relevant

from what is not. For Derrida [1998], deconstruction allows choosing relevance

within the text as part of a critical reading process where the text is turned

against itself. By limiting the critical reading to text the reader may perform

relevance play, experimenting with what maybe relevant. Choosing relevance is

to choose a referent—textual in this case—to reveal weaknesses, hidden themes,

and other indications that are exposed by every new reading. This is different from

how structuralism approaches relevance. Context in structuralism is renewed or

changed by the movement of time—events in the external world for example—as

the context changes, the text also changes. But deconstruction reproduces

meaning in the text with every reading by relevance. Every time a text is

read, a new connection to another text—believed to be relevant—produces a new

context, hence new meaning. Foucault [2002] argues that what is relevant—or

what is believed to be relevant—changes according to the change of knowledge.

Knowledge then directs relevance even in the closed system of language presented

by deconstructionists.

2.5.2 Context as a solution

While posing an analytical problem, context is also an intuitive solution. Scharf-

stein [1989] observes that we are more aware of context in practice than in

theory—this relates to what is previously identified as the common sense approach

to context in software engineering.

One possible approach to demarcate ‘context,’ or the domains indicated by

context, is to represent context in terms of ‘connections’. According to Kristeva

[1990], interpretation, in this sense, is an act of ‘making connections,’ and as

a result, disconnections [Dilley 1999]. Such an approach relates the system

to its surroundings, it is a result of an interpretation, and by itself, yields an

explanation [Dilley 1999]. Therefore context can only be analysed interactively

and not disconnected from its application [Harvey 1999].

29



www.manaraa.com

Chapter 2: Background

Wittgenstein [1974] observes that context, or contextualism, comes as part of

a ‘language game’ that people play. It resembles how an agreement about the

meaning and the use of a word could be arrived at. Therefore, Wittgenstein is in

favour of asking about the use of ‘context,’ rather than asking about the meaning of

it [Wittgenstein 1974]. Malinowski, according to Halliday [1977], derived the term

‘context of situation,’ alluding to the meaning of words that relate to the culture in

which those words are used, a platform, perhaps, where the ‘language game’ can be

played. An example of how the language game and the context of the situation play

an important role in any technical discourse is presented by Ozkaya et al. [2008].

Ozkaya et al. [2008] remark how stakeholders express their quality attributes

and concerns (subattributes) via non-standard terms like ‘flexibility.’ A dialogue

with a stakeholder is presented where an analyst, referred to in the dialogue as an

evaluator, engages in a conversation about the stakeholder’s concerns for a system.

When the stakeholder uses the unfamiliar term ‘flexibility,’ the analyst prompts the

stakeholder to explain what is meant by the term. The stakeholder answers: “Well,

flexibility has two thrust areas for our product, one from the user perspective and

one from the system perspective,” [Ozkaya et al. 2008]. Afterwards, the dialogue

continues in which the stakeholder is requested to give an example of the ‘use’

of the term. By engaging in the ‘language game’ according to Wittgenstein, the

analyst is able to arrive at an agreement about the term in question. Such an

agreement is reinforced by the fact that both the analyst and the stakeholder share,

or perhaps agree to share, a common platform making use of the context of the

situation.

Such a platform establishes the term ‘flexibility’ as a focal event [Goodwin

and Duranti 1992]. A focal event demonstrates a contextualisation act of the

term, in reference to several parameters. According to Goodwin and Duranti

[1992] a focal event, or a phenomenon under investigation, can be contextualised

through four parameters: social and spatial framework, behavioural environment

(represented in gestures or behaviour), language (as context), and the extra

situational context (background knowledge and frame of relevance). Dilley [1999]

adds two extra parameters: the historical and psychological context. But in

order to make effective use of contextual parameters in any analysis, especially

given the complexity involved in accounting for such diverse interrelationships,

an interpretive conceptual framework of reality must be formulated [Dilley 1999].

Thus, framing context as an object of investigation [Wittgenstein 1974].

In Artificial Intelligence (AI), for example, a couple of contextual frameworks

[Beneceretti et al. 2001, Guha and McCarthy 2003] are sought to simplify the

knowledge representation of multi-context systems. Similarly, this move to

categorise contextual patterns is also adapted by semantic models in linguistics.

30



www.manaraa.com

2.5 Context in other disciplines

(a) The black shape fails

to preserve its frame/con-

text.

(b) The black shape pre-

serving its frame/context.

Figure 2.2 – Context and form in two cases: the ‘A’ form is not responding to its

contextual structure, while the ‘B’ form responds better to its contextual structure. The

two figures are inspired by an example that appeared in [Alexander 2002, pp57-58] of

two ways to design an irregular shaped building.

Semantic models help to explain patterns of inter-contextual variability, according

to one of three models: the semantic model, the pragmatic model, and the index

model [Cappelen 2007]. Cappelen [2007], however, suggest that these explanatory

models are not enough. What is needed, given the different areas of discourse such

models must explain, is an ‘arsenal’ of models and data-gathering procedures.

One example of representing context as connections to reduce contextual

variability is exemplified in the framework ‘Ambiguity Contexts’ in AI introduced

by Guha and McCarthy [2003]. In this framework, contextual variability is reduced

through making connections with other relevant events. The statement ‘He went

to the bank,’ for example, is dependent on the meaning of the word ‘bank,’ either

referring to a financial bank or a river bank. Only when another statement is

uttered: ‘He got money from the bank,’ is the denotation of ‘bank’ clarified.

2.5.3 Context as form

According to Alexander [1964], form is the manifestation of context. In which form

has to respond to its context, and when it is implemented it becomes part of it.

Thus context, in general, is made of an ensemble of forms, inevitably becoming a

context for yet another form [Alexander 1964]. In a meeting room for example, the

room has to interface with the floor plan of a building taking its form relative to

other forms: the office across the hall, the hall itself, the height of the roof, and so

on. After the form of the meeting room is finalised, the meeting room becomes the

new context for items to be fitted within the room: the meeting table, chairs, etc.

But the context-form regression is a cause/result of several interrelated

form-based and non-form-based patterns. The pattern of crowd movement may

31



www.manaraa.com

Chapter 2: Background

influence the way a road is designed between a point of departure and a point

of destination. Therefore, Alexander [1964] points out that a pattern of some

sort is to be found, or looked for, in the ‘earliest’ functional origins of a problem

(context). Alluding to the idea, that patterns of form are deeply rooted in patterns

of life. This inspired the software community to discover such patterns beyond

artefacts of design [Coplien and Harrison 2004, Fowler 1997, Grne 2006], and in

software-system thinking [Novak and Levine 2010].

What is particularly relevant to form is the demands placed by the context,

recognised for example by [Skjeltorp and Belushkin 2004, Thompson 1966] as

forces. According to Alexander [1964], form achieves fit by resolving contextual

forces. According to this view, it is possible to replace context by force. A force then

becomes recognised as a result of its effect(s), or misfits. For example, if a new tool

is first used, say a swiss army knife, the user takes notice of signs of irregularities:

failing to cut a string because the knife is not sharp enough, the handle is too small

or too large, and so on.

But Alexander [1964] uses misfits to address a more difficult problem, how

to describe the desired attributes of form within a particular context. Instead

of describing all desired outcomes of a developed system—also referred to as

fits—Alexander suggests producing a list of undesired outcomes, or misfits.

Alexander gives two reasons for listing misfits. First, misfits are more concrete.

They are the result of unresolved forces, and when a designed artefact is put into

its environment—its context—it is expected that misfits start to arise. As such,

Alexander argues, misfits are more concrete, thereby forming an easier way to

perceive a force. Second, misfits are typically fewer than fits. Alexander argues that

when context interacts with form, fit becomes the rule and misfits the exception.

For example, listing the number of fits between a coffee table and a person becomes

an endless process. But if the table is a bit too high or a bit too low, too large to fit

into a door, or too heavy to carry, it becomes easier to observe and describe. For a

house, an office that is too small for a large desk, a window too high to enjoy the

view while sitting on a couch reading a book. Misfits standout.

Recently, however, Alexander [2002] developed the context-form relationship

further by adapting a holistic stance towards form, in which the development

of form is ascribed to a ‘structure preserving’ process, also called the unfolding

process. Form, in light of this process, responds not only to its immediate context

but also to the context of the form as a whole. Alexander presents examples from

nature where this concept has revealed itself persistently in all areas of life. The

form holistically, therefore, maintains its structure intact throughout all stages

of growth/change, where the parts transform to preserve the whole. Alexander

argues that preserving the structure not only serves functional purposes, but it is

32



www.manaraa.com

2.6 Synthesis of Context

also aesthetically appealing.

To demonstrate the structure preserving concept two figures are depicted: Fig-

ure 2.2-(a) and Figure 2.2-(b)—inspired by an example that appeared in Alexander

[2002]. In the two structures of Figure 2.2, the black shape resembles the ‘form’

and the white space and the boundary resemble the ‘context’. In Figure 2.2-(a), the

black shape is not relating to the context. It seems that such a shape is a result

of an inward focus, which fails to respond to the changes to its context. In Figure

2.2-(b), the shape reacts to the context differently, where the black shape responds

well to it.

2.6 Synthesis of Context

From the ideas reviewed in the literature on the use of context in software systems

and other views from other disciplines, it possible to identify some key themes on

context. These themes summarise the different ways context is used in various

disciplines, and suggest key concepts that any model should consider when it

attempts to represent context. Some of these identified themes also confirm the

observation made on context as the primary source of system variation through its

influence. In addition to the degree of influence context has on a system, perception

emerges as another dimension of context. Perception also directs what is believed

to be and what is truly influential. Therefore, in order to arrive at a complete model

of the system’s context, an analyst must perform a synthesis of context based on

influence and perception.

I present, first, the main themes derived from literature. Second, I introduce

the main contribution of this chapter, which is a synthesis of identified contextual

themes in realising context in two dimensions, influence and perception.

2.6.1 Themes from literature on context

The main themes identified from literature are derived from software and other

disciplines that suggest that these themes apply beyond the concern of analysing

(software) systems. Each theme confirms the notion that context in reality is

more sophisticated and more complex than realised in theory. This assumption

is reinforced by software engineering examples presented earlier, in particular, the

acceptance and use of the common sense approach to context. Table 2.3 gives a

summary of the main themes presented here.

33



www.manaraa.com

Chapter 2: Background

Theme Related sources

Context is a set of connections Contextulisation is the act of making connec-

tions [Kristeva 1990]

Data flow connected processes [DeMarco

1979]

Relevance is directed by knowledge A system of signs is directed by knowledge

[Foucault 2002]

Knowledge of language directs reference

[Cappelen 2007, Guha and McCarthy 2003]

Context regresses endlessly Extending context beyond boundaries pro-

duces new insights [Culler 2009],

Contextual moves [Dilley 1999],

Context-diagrams [DeMarco 1979].

Context has states Goals, architecture state, and constraints

[Kazman et al. 2005]

Connections and disconnections [Kristeva

1990]

Context has influence A misfit is identified as any stress on an en-

semble resulting of the interaction between

context and form. [Alexander 1964]

John et al.’s (2009) observation on the influ-

ence of a system of patterns on individual

patterns.

Table 2.3 – Summary of themes that appeared in the literature on the use of context.

Theme 1: context is a set of connections. Connections are derived from

Kristeva [1990], characterising the process of contextualising/interpreting as a

process of making connections and disconnections. This is also derived from

realising context not as objects, but as the result of the interaction between

elements. Then such interaction is captured in the form of connections. Context is

also expressed in terms of connections in the context-diagram and DFDs at large,

as defined by DeMarco [1979]. But compared to connections in DFDs, where DFDs

refer to connections in terms of data flow, Kristeva’s idea of connections is more

34



www.manaraa.com

2.6 Synthesis of Context

abstract.

Theme 2: relevance is directed by knowledge. Foucault [2002] directs rel-

evance within a system of signs through knowledge. Therefore, contextualisation

must be guided by a knowledge framework. This relates to how to direct connection

in a process of making connections according to Kristeva [1990], which is also

indicated by models following Cappelen [2007]: semantic, pragmatic, and indexical

models; also AI context model by Guha and McCarthy [2003].

Theme 3: context regresses endlessly. Context requires a guiding process

that enables a natural regression from one context element to another. But this

regression must be limited at some point by a rational decision that postulates the

absence of relevance based on knowledge. According to Culler [2009], extending

context beyond traditional boundaries provides opportunities for redefining the

context of the problem, hence producing new insights. Redefining boundaries is

also referred to by Dilley [1999] as contextual moves. Therefore, context-diagram

represent mainly the act of limiting context, as an analyst sets the boundary to

limit context from extending endlessly.

Theme 4: context has states. Kazman et al. [2005] mentioned three elements

for the context of software architectures: goals, architecture state, and constraint.

Thus, different architectures may have different context states based on a certain

combination of these three elements. Accordingly, it is possible to generalise the

notion of context states to levels of software and system development other than

architecture.

Kristeva [1990] also imply the concept of states for context through connections

and disconnections. If context is the act of making connections, disconnections is

an act of identifying elements that not part of the context. As a result, the system

may be formed by a set of connections and disconnection, whereby an element could

be either in a state of connection with another element, or a state of disconnection.

Theme 5: context has influence. Alexander [1964] identifies the role of context

as the main source of influence on elements of design through what he identifies as

force. This is also observed by John et al. [2009] on the influence of the architecture

on how structure patterns are to be integrated within a larger context. The concept

of context and force have been adapted by software patterns as the main source

of influence on design decisions, as in the work by Buschmann et al. [2007] for

example. This supports the observation made on the satellite system thought

35



www.manaraa.com

Chapter 2: Background

experiment, on the existance of influencing factors that shape requirements and

architecture. But what these ideas do not mention is that context has different

degrees of influence, and how these influences change over time.

2.6.2 The emergence of influence and perception

The review of literature confirms what was introduced earlier in my preliminary

research (Section 2.2), that context is the main source of influence, which deter-

mines the degree of variation for a system. But another concept emerged from

literature. The role of knowledge in context. In the preliminary research, system

requirements and architectures are recognised to vary based on the degree of

influence within context. But influence within context is not always self-evident.

Therefore, the role of knowledge becomes crucial for analysts to identify whether

influences are actually real. As pointed by Culler [2009], Foucault [2002], and

Harvey [1999]; elements of context come into being after they have been hidden,

and unperceived, to redirect the understanding of a given context. It is also

indicated through the observation made by Ozkaya et al. [2008] on explicating

terminology use within the same practicing domain, in analyst’s discussion with a

stakeholder on the term ‘flexibility’.

Therefore, from the role of knowledge in context I propose perception as another

dimension of context in addition to influence. Thus context manifests through two

aspects: the degree of influence, and the degree of perception. Perception of context

plays an essential role within all the themes summarised in Table 2.3. For example,

preserving structure of the two shapes in Figure 2.2 is not only determined by the

level of influence of the frame—whether changing the frame is possible or not—but

also on the degree of perception about the frame—whether the frame is actually

shaped in this way, and whether its influence is actually what it is thought to be.

By presenting a synthesis of context based on two dimensions: influence and

perception, I arrive at the main purpose of the thesis. Based on this novel view of

context, the following conjecture is offered, which supports the notion that there is

a need to model context in software systems as a separate system element.

Identifying context through influence and perception exposes—more

effectively—system limitations and opportunities to vary system elements,

and support system developers to make more effective decisions on the kind

of solutions there are in systems, in relation to software and hardware.

Conjecture

36



www.manaraa.com

2.7 Summary and conclusion

2.7 Summary and conclusion

In this chapter, from the preliminary research the role of context is recognised

in allowing systems to vary relative to different degrees of influence. The

less influence of a context the more one is able to vary its requirements and

architecture. This is followed by answering the question ‘what is context?’, by

reviewing different disciplines that approached the question: from using the term

synonymously with environment, frame of reference, and setting; to the more

formal definition offered by Scharfstein [1989] and Alexander [1964]. This led to

the recognition that context lies in the interaction between two or more elements,

not in the elements themselves.

Further review of context in software engineering revealed different uses of

the term. Two main approaches are identified: first, context is used as part of

setting system boundaries, exemplified in the context-diagrams as part of structure

modelling such as DFDs. The second, is the common sense approach to context

manifested in the use of requirement scenarios. The second approach is indicated

by Scharfstein [1989], that context is more realised in practice than in theory.

By reviewing literature in other disciplines, where context is discussed as a

separate issue, it is possible to recognise context as a problem, a solution, and as

form. Context as a problem is actually manifested in three problems: the problem

of regression, the shell problem, and the problem of relevance. This is mainly

handled in reality, according to Scharfstein [1989], through common sense. As

part of the solution to context, Wittgenstein [1974] observes that people engage

in ‘language games’ where agreements about the meaning or the context of a

dialogue is reached informally within a conversation. This is also observed by

Ozkaya et al. [2008] in software engineering. Other more formal approaches to

context are identified, either modelling context itself through certain parameters

as in Goodwin and Duranti [1992] in anthropology, Cappelen [2007] in the study of

semantics by using semantic models, or contextual frameworks in AI by Guha and

McCarthy [2003]. In context as form, form is the result of its context, as pointed

out by Alexander [1964]. Alexander [2002] builds on the concept of context as form

through the concept of structure preserving, where ‘form’ is evaluated relative to its

ability to preserve the shape of its context. While the structure preserving concept

is recognised within a physical context—shape of the land, building forms, and

so on—it also pertains to non-physical contexts—laws, and people’s desires and

ambitions.

In conclusion, from ideas reviewed in the literature it is possible to arrive at

a synthesis of context based on two aspects: influence and perception. The degree

of influence is realised within a degree of perception. Perception is indicated by

37



www.manaraa.com

Chapter 2: Background

the concept of common sense by Scharfstein [1989], observations made by Harvey

[1999] on implicit context, and use of knowledge to direct contextual relevance by

Foucault [2002] and Culler [2009].

38

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Part

II
Contribution

Notes on the Synthesis of Context A novel approach to model context inالعنوان:
software engineering

.Al Shaikh, Ziyad Aالمؤلف الرئيسي:

Boughton, Clive(Super)مؤلفين آخرين:

2011التاريخ الميلادي:

كانبيراموقع:

185 - 1الصفحات:

:MD 616120رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

Australian National Universityالجامعة:

College of Engineering and Computer Scienceالكلية:

أسترالياالدولة:

Dissertationsقواعد المعلومات:

صناعة البرمجيات ، برامج الحاسبات الالكترونية ، هندسة البرمجيات ، النمذجة ، النظممواضيع:
الخبيرة

https://search.mandumah.com/Record/616120رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/616120


www.manaraa.com

Part

II
Contribution



www.manaraa.com



www.manaraa.com

Chapter

3
Context Models

For real estate, the motto is “Location, location, location.” For software

process, it should be “context, context, context.”

[Kruchten 2009]

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Influence and perception . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 A model of influence: the force model . . . . . . . . . . . . . . 45

3.2.2 A model of perception: the knowledge model . . . . . . . . . 48

3.3 The Context Dynamics Matrix . . . . . . . . . . . . . . . . . . . . 53

3.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . 56



www.manaraa.com

Chapter 3: Context Models

3.1 Introduction

In the previous chapter I have drawn some general themes from the literature

review that support the idea that context is the source of influence on software

systems and that context is also realised through perception as a second dimension

of context. Here, I build on three of the previous themes identified: context has

influence, relevance is directed by knowledge, and context has states. For the first

theme—context has influence—the force model is presented. It introduces four

levels of force, each level has its own implications on how the system may vary. The

force model represents the influence dimension of context. For the second theme,

that relevance is directed by knowledge, the knowledge model is introduced. It

comprises five knowledge sources as a basis for selecting a relevant influence. The

knowledge model represents the perception dimension of context. For the third

theme, that context has states, the Context Dynamics Matrix (CDM) is introduced.

It describes context in terms of sixteen states derived from joining the force model

and the knowledge model. CDM joins both the influence and perception dimension

of context in a single view.

3.2 Influence and perception

Influence and perception, as previously indicated, are the synthesis of context

based on two views: the definition by Alexander [1964] that context is ‘force,’

and the definition by Scharfstein [1989] that context is what enhances our

understanding. Alexander emphasises the influence of context on form, and

Scharfstein emphasises the perception of context on understanding. Both views

of context are intertwined, whereby it is not possible to recognise a force without

first perceiving it.

Whenever introduced to a design problem, the first step is to understand the

nature of the problem in order to arrive at a solution. As engineers, it is expected

to introduce useful machines to the world [Jackson 1995a]. It is based on this

usefulness, and goodness, that any work of engineering is judged. This is what

Alexander [1964] refers to as the goodness of fit. But perceiving context is not

straightforward. According to Boehm and Basili [2001], fifty percent of rework

effort is the result of not identifying (perceiving) the correct requirements at the

start of system analysis.

The context of the developed system, however, is not limited to the problem

of establishing a working artefact. It extends to the concern of sustainability,

by addressing needs within a future context that cannot be fully described. In

42



www.manaraa.com

3.2 Influence and perception

addition to the functional needs that the system is required to have, the system has

to address future needs/context(s). Such needs are manifested in non-functional

requirements, such as modifiability, security, robustness, and so on. As a result,

the field of context becomes broader, thereby making it more difficult to describe.

Alexander [1964] summarises this issue by stating that we are trying to design for

a context that we do not fully understand.

But even at the local (present) context, the goodness of fit that Alexander [1964]

refers to, is bound by its perception. How to distinguish a misfit from a fit without

context? Scharfstein [1989] argues that given a certain set of contextual elements,

it is possible to justify nearly anything. That is, given a combination of influences,

what could be considered a misfit in one context may be a fit in another. Consider

the simple example of a process that checks for user’s authentication through

a username and a password. Let’s assume that a user enters a username and

password, and the system refuses to grant him or her access. Is it possible then to

determine whether a misfit or fit has occurred? How to determine if the process

has failed to perform its function? This context may lead to a dilemma if it is

not possible to access the stored password to be compared with the actual entered

password to determine if what occurred is a fit or a misfit. If the person has entered

the wrong username and password the process would be actually performing its

function correctly, and the response by the process would have been a fit. But if

the opposite is the case, that is, if the correct username and password has actually

been entered, then the process would have resulted in a misfit. To use Scharfstein

[1989] argument, knowing if the process and its context has resulted in a misfit

or fit depends chiefly on how much we know about the context, or alternatively

how the context is described. If the context is described to indicate that the correct

username and password was actually entered, then the process has resulted in a

misfit, if the opposite is described that the user did not enter the correct password,

then the context becomes a fit. This is equivalent of asking the user to make sure

that the correct username and password have been entered. Typically, whether

the correct or the wrong password have been entered, the issue may be resolved by

resetting the password with a new one.

But it is possible to argue against this example, by saying that this only applies

in the context of user support, where circumstances surrounding the actual case

may be in a way that it is difficult to determine whether the case is a fit or a

misfit without further investigation. That user support is different, say, from

requirements for example, where a fit and misfit can be well defined for every

authentication process. If a requirement states that a user must enter a username

and a password, the misfit and fit is clearly defined. To argue against this is to say

that this is in fact true. User support is different from requirements, and it follows

43



www.manaraa.com

Chapter 3: Context Models

that fits/misfits may be different as a result. But this difference actually supports

the argument that misfits are bound by context. Because to move from the level of

user support to requirements changes the context. The knowledge of fit/misfit on

the level of requirements may be different from user support because the context is

different. It is possible to say that the context of the process of user authentication

on the level of requirements is typically well defined and rarely changes for any

context. This last statement itself is produced based on a perceived notion that

user authentication is a process that is universal, which applies to all possible

cases. But it is possible to imagine an authentication process that only allows

unauthorised users to access the system. In this ‘context,’ users with a username

and password are checked and not granted access because they are blacklisted. In

this odd case, misfits and fits are reversed. What is typically a fit becomes a misfit,

and what is a misfit becomes a fit. Thus in order to change fit into misfits, what is

needed is to change the context. The process of authentication has hardly changed.

The question of why the process should deny authorised users to gain access, needs

another context. And the newly provided context might need another context, and

as Scharfstein [1989] points out, this becomes open for an endless regression.

Therefore, misfits are only determined within the context they appear in. But

misfits are not all the same. For example, in the authentication process, a misfit of

not granting a user access is different than the misfit of a user being granted access

but after a long delay. Although both are considered misfits, not granting access at

all is more severe than being delayed. In fact, a user that experiences delay might

not notice the delay if the whole system runs at the same speed, because delay is

relative in this context. But not being granted access is a misfit in almost all the

cases of the process of user authentication.

Accordingly, it is possible to observe, from the example, that misfits differ

based on context. Some misfits are more tolerable than others. But misfits and

fits also depend on the perception of them. Consequently, both influence and

perception, must be graduated in order for the context to be identified correctly.

Not all influences result in the same misfits, and not all influences are perceived

with equal levels of credibility. In analysing a context, as in the case of the

authentication process, strong influences must be distinguished from weak ones,

as the influence denies access compared to the influence that delays access. It is

also equally important to distinguish based on the perception of the influence, have

the user been denied access because the user did not enter the correct password,

or the user have been acutely granted access, but the user was not able to realise

(perceive) that he or she have actually accessed the system.

Therefore, in order to identify context more accurately, two models are

proposed: a force model of influence, and a knowledge model of perception. Using

44



www.manaraa.com

3.2 Influence and perception

both models it is possible to identify different levels of influence and perception

associated with each context element.

3.2.1 A model of influence: the force model

The force model of influence is partially derived from the definition of context

by Alexander [1964], what places a demand on an ensemble, recognised as force.

But by observing carefully how Alexander identifies such demands, it is possible

to distinguish forces based on types of needs. This is particularly clear when

reviewing the Indian village study.

In the Indian village study [Alexander 1963]—reproduced in Alexander

[1964]—Alexander presents the following classification of needs:

• needs felt explicitly by villagers,

• needs called for by national and regional economy and social purposes,

• needs satisfied implicitly in the present village.

These categorised needs are different in nature. A need felt by a villager, is

different from a need enforced by law. The first, is a need pertaining only to one

villager, and may be shared by others, but the law applies to every villager.

After identifying the categorised needs, the study produces a list of needs in the

form of statements. Each statement, if not satisfied, represents one source of misfit,

statements such as ‘rules about house not facing south,’ and ‘cattle access to water’.

A review of the listed needs, similar to the needs category, also leads to conclude

that there are notable differences between them. The need of the cattle to access

water is different from the rules about house not facing south, in which the second

may result in the loss of cattle, while the first leads to villagers dissatisfaction.

Therefore, differences among category needs, and differences among the list of

needs themselves, have particular significance in resolving forces. To resolve the

forces within the context of a village, design must take into account the differences

between these needs. Consider the authentication process example. A user that

seeks access may face two misfits: the process does not grant the user access, or

grants the user access but after a long delay. According to Alexander’s model both

misfits are the same. But it is left to the analyst’s common sense to recognise the

difference between the two misfits. If the process does not grant access the system

becomes dysfunctional for the user, but if the delay occurs it is still functional but

not to the liking of the user. Both misfits influence the user differently. Therefore,

45



www.manaraa.com

Chapter 3: Context Models

Figure 3.1 – Levels of forces, at the top is the force of fit which has more strict

consequences, and as the pyramid gets wider the consequence of the force becomes

less definitive and choices become more tolerant to change.

what is missing from Alexander’s theory, is a model for the context of forces that

exposes such differences.

To properly assess misfits and fits, it is necessary to produce a general model

that describes the differences among forces. Alexander [1964] has put forward a

model that recognises the existence of forces that influence form, and proposes that

in order to achieve a fit between form and context, each force must be resolved—by

transforming misfits into fits. But the influence model presented here goes a step

further, by recognising that fits and misfits have different degrees of significance,

and so do the forces that cause them.

By introducing the concept of influence that includes different levels of forces

using the force model, first introduced in Alshaikh and Boughton [2009], the

approach distinguishes between four forces. Figure 3.1 illustrates different levels

of force. In what follows, a description of each force is presented.

Force of fit1

Fit requires elements to obey strict measures that cannot be compromised. Such

strictness is typically expressed by parameters with well defined values, type of

1The term ‘fit’ here, is not what Alexander [1964] have termed as fit and misfit. As mentioned

before, the concept of fit by Alexander is more general, while fit here applies only to particular

contextual instances.

46



www.manaraa.com

3.2 Influence and perception

attributes such as: capacity, size, speed, distance, etc. In the authentication

process, a strict force is placed on the user to match the username and the password

in order for the user to be granted access. Even if the user enters the password with

one less character, the process—or the model that executes the process—will still

deny the user access. In this process, and because it forces the user to be precise

about what the system requires from the user in order to enter, it also does not

allow an alternative less restrictive point of entry.

What this means for users is that they will not be allowed, according to this

influence, to vary how they are granted access. They have to pass through the

same level of influence, a level of fit. Even if the system provides different ways

to access the system, the force on the user will remain fit, whether the user needs

to enter username and password, or provide a secret answer to a question, use

a thumbprint authentication, or any other equivalent mechanism. A misfit as a

result of this force would mean that the user will not be allowed to use some or all

of the system’s functionality.

Force of function

If the influence is a force of function, it is then expected that a specific goal is to be

achieved, without necessarily specifying how the goal is achieved. Unlike the force

of fit, where the goal is achieved through precision, a force of function is not usually

associated with any precise measure. For the authentication process, the way the

process grants access to authorised users after a correct username and password is

entered, is a matter of function. The system is under a force of function to allow the

user access in any way possible. The process under this force may vary how fast

it performs its function, but it must allow the user to access the system in all its

variations. A misfit as a result of a force of function would mean that the user did

not have access to functionality, although there is in principle, multiple possible

ways for the system to achieve its functionality.

Force of taste-and-passion

When under the influence of a force that is taste-and-passion, choices are limited

according to preference not necessity. A force of taste-and-passion demands

satisfying a preference. Unlike fit and function, not meeting the demands of a force

of taste-and-passion should not result in a functional failure, but failure to meet

users’ demands, that may lead to customer dissatisfaction. If the authentication

process grants access to the user, but the process takes too long, it is possible to

say that the system is not able to provide a service in a timely manner according

47



www.manaraa.com

Chapter 3: Context Models

to what the user regards as fast or slow. The degree by which the system is able

to vary its service speed is sensitive to the user’s preference. But knowing that

the system is under a force of taste-and-passion enables the system to vary its

service if needed to continue to provide functionality. A misfit under the influence of

taste-and-passion would not necessarily mean that the functionality is not granted,

but it is possible that the functionality is not granted according to the preference

of an individual.

Force of culture

Culture forces a choice of tradition and established norms that may be against, at

times, the personal preference of individuals. In this case, such a choice is made

as a result of a cultural force. For example, if a system grants access to users after

checking their username and password in a half a second, and takes a full second to

grant access using the same process but somewhere else, does the system incurred

a misfit for both cases, only the last one, or none of them? If the force is culture on

both processes, the force must be weighed relative to the speed that normally takes

to gain access for each place. That is to say, depending on the culture of the place

where the system is operating, it is possible to regard that a full second is the best

speed compared to other speeds that take two seconds. In other cases, such as the

speed of half a second, it may be regarded as uncommonly slow compared to other

functions that perform in half of its speed twice its function.

Accordingly, under a force of culture, it is not possible to vary how to achieve

a goal unless accepted by the culture. The evaluation of whether a misfit is

considered so, is also relative to where the misfit has occurred. But in all cases,

violating the measures of what is accepted for a certain culture or not, does not

mean that the function has failed. Consequences of not obeying the standards

of a culture might result in serious misfit, but nevertheless, a misfit that is not

universal.

3.2.2 A model of perception: the knowledge model

Perception in context stems from a number of factors influencing observation.

Much criticism in the philosophy of science is drawn against induction as a method

of inference, because of the limitations of observation—see for example Feyerabend

[1988]. Inductionalists are challenged/weakened on the grounds of failing to

account for the right initial conditions (context) of an experiment when relying

on observation [Popper 2006].

Perceiving context is realised on different levels, pertaining to theories about

48



www.manaraa.com

3.2 Influence and perception

Figure 3.2 – The four parameters of perception represented in three rings, with a split

core.

phenomena or concepts about meaning, analysis of events, interpretation of

actions, state of affairs, and so on. In semantics, for example, the use of

Indexicals Kaplan [1989] pronouns like: ‘he’ and ‘I,’ and references to time: ‘now’

and ‘then,’ are all references that create implicit contexts. In the utterance: “I am

here”, the ‘I’ is an implicit reference to a person not mentioned in the utterance

by name, also ‘here’ in regards to place. Both cases have an implicit connection to

someone or somewhere. It is not until ‘I’ and ‘here’ are clarified, that the reference

becomes explicit.

Raising doubt about the validity of a statement that has generalities, stereo-

types, and definitive judgements is another example where context is implicit.

Berry and Kamsties [2004] refer to them as language errors. A statement like:

“All lights have switches,” not only raises the question whether ‘all’ is accurate

(100 percent not merely 90 percent), but also whether each single light has its

own on-off switch or all lights have single or perhaps double switches. Berry and

Kamsties [2005] reported that when this statement was presented to clients for

clarification, clients had different interpretations.

Therefore, similar to modelling influence, a model for perception is presented.

The knowledge model is partially based on Goodwin and Duranti [1992] contextual

categories that divide context into three parameters/themes:

• Setting: the setting in which the event under investigation occurs.

• Behavioural environment: non-verbal signs associated with an event. It

includes spatial orientation and posture when analysing a talk, and the

49



www.manaraa.com

Chapter 3: Context Models

actions of others involved in an event.

• Language as context: the language itself as data invokes context and provides

context for other events.

• Background knowledge: how a local event is influenced by participants

drawing from their own experiences stemming from culture and beliefs.

According to Goodwin and Duranti [1992], the study of an event is to determine

how it invokes and provides context in a discourse. As Figure 3.2 illustrates,

the model identifies four layers and five sources of knowledge. Drawing from

Goodwin and Duranti [1992], it is possible to recognise truth-reality as the

highest level of knowledge derived from the real world setting, theories and

values (laws, ethics and morals) as part of the background knowledge, semantics

and pragmatics (language as context, behaviour environment), and judgements

(experiences identified as part of background knowledge).

Knowledge in the model is recognised in the form of layers. There are ex-

pectations of how events occur, drawing basically from judgement and experience,

without having solid supporting evidence. Then a deeper level of knowledge is

obtained from text, or a conversation, without having a deeper understanding

of the theoretical framework from which the text is drawn. A deeper form of

knowledge, is obtained from interpreting text while having a strong grasp of the

theoretical framework or the ethical and moral arguments that support a decision

or a choice. At the core is the basic realities of a situation where a particular event

occurs. Identifying and verifying elements of text in reality—as a requirement

statement—strengthens the knowledge about the text and provides firm grounds

to base decisions on. In what follows, a description of each level is provided starting

from truth-reality, the strongest form of knowledge, and ending by judgement.

Truth-reality

Truth-reality points to events and actions reported with certainty, as it pertains

to the highest level of confidence. Reality points to tangible elements that can

be verified and examined, such as implemented systems that have been used and

understood for a long time. In order for a force to be based on truth-reality, the force

or its effect(s) must be demonstrated. This is equivalent for the authentication

process when the entered password is compared with the stored password to

determine if the misfit is the result of a wrong password or a fault in the system.

When the misfit is verified, whatever conclusion reached would be based on

truth-reality.

50



www.manaraa.com

3.2 Influence and perception

Therefore, when a force based on truth-reality is identified, it states that

the knowledge about the force is highly reliable, and is easy to verify, yielding

consistent results.

Theory

Theories about the world are truths accepted with a certain degree of rigour within

a vocational community. Such theories are well documented and have established

a level of credibility. Some organisational goals are local theories of practice that

are well understood and accepted by a particular group. Theory also constitutes a

well formulated set of statements describing the ambitions and aims of a group

of people. For an authentication process, it is possible to provide a model of

the process that described how the system performs its function. Any influence

identified using this model would be based on theory. The same model may include

the code that performs this process, or the results of past successful operations

from the system log. An analyst may use this information to formulate a better

understanding of how the authentication process functions, and may be able to

identify if a misfit is possible given the available information.

When a force in a system based on theory is identified, it is expected to have a

high degree of reliability and may be applied to wide range of situations. A theory,

typically, would have a considerable level of description, and familiarity within

a certain group. Even if the theory, the model, or the principles, is not widely

known, it is possible to provide resources explaining its underpinnings, and show

its implications.

Values

Values form the basic beliefs and code of conduct within a society, or within

individuals forming a group in a society. They are at times expressed and enforced

by laws and regulations. Such rules and regulations are documented and well

recognised. For example, a user may be granted access to the system based on

law. coffee table design is required to fit quality standards enforced by law. This

may also include how long it takes the user to gain access to the system. A piece

of legislation may not allow the system to deny some users access to part of the

system for longer than a certain period. A force of fit for example, in this case to

fit the time period, is based on values—based on the values that a community hold

for obeying laws.

When knowledge is based on values, a high level of conformity is achieved,

conforming to one aspect of a society’s context, its laws and regulations. When

51



www.manaraa.com

Chapter 3: Context Models

values are compared to theory, theory varies between application domains, but

values may vary between organisations and governments.

Semantics

A statement that is not part of a theory or values, and to open for interpre-

tation, is identified as a semantic statement. Readers have different semantic

interpretations of the same statements, thereby reflecting lower conformity. For

example, words describing the process of authentication within a requirement

statement might not be precise. Thus leaving room for interpretation, it may be

misinterpreted, or regarded as lacking validity.

The knowledge model follows the definition put forward by Carnap [1942] of the

difference between semantics and pragmatics, in which pragmatics is in reference

to the user’s language and intensions, while semantics is the study of statements

as abstract expressions without considering the user. But semantics is considered

here to include pragmatics whenever possible as part of the same category. There-

fore, in the case of requirements, based on a semantic interpretation, statements

are identified without having access to the producer. To interpret the statement’s

semantics using pragmatics means that the meaning is derived from the user

directly, with or without a documented statement. But whenever possible, it is

preferred to interpret statements taking into account stakeholders’ intentions.

A force identified through semantics is more sensitive to the system’s context

than other forces linked to theory and values. There is always a chance that a

statement is rephrased, or edited for corrections, resulting in a change in meaning.

Judgements

Judgement is a private interpretation or expectation not supported by any seman-

tic statement. Judgements are useful whenever ambiguities arise, as they draw

from experience, representing deductive reasoning and intuition. While they are

easily challenged, they are also often overlooked, and mistaken for facts. For

example, if the analyst makes the judgement that a misfit from the process of

authentication is a result of a novice user who does not know how to use the system.

It is possible that the analyst may have based this judgement on experience with

the system, and new users, that leads to the conclusion that the user should try

again.

Judgements are based on conjecture, and are easily misguided. Therefore,

while it is important to have the freedom to explore implications drawn from the

52



www.manaraa.com

3.3 The Context Dynamics Matrix

Figure 3.3 – Four state matrix of Alexander’s fit/misfit model, showing two extra

states when perception is added as evident or not evident.

understanding of a system, these implications must always be identified for what

they are.

3.3 The Context Dynamics Matrix

To represent the two dimensions of influence and perception as context, context

has to be described in terms of states. In which context is the result of both

dimensions. Whenever a context element’s influence is recognised, it is recognised

under a certain level of perception. Each time the influence changes, the context

moves to a new state, and similarly, if perception changes, the context moves to a

new state. These states are represented by the Context Dynamics Matrix (CDM).

In Alexander’s model, the perception of context is fixed by recognising misfits,

arguing that misfits are self-evident. This results in two states, either the context

and form become a state of fit or misfit. But as argued previously, misfits are not

self-evident, as misfits themselves are recognised within a context of their own,

states become four instead of two. Misfit has two states either a misfit is evident,

or not, and fit has two states, either a fit is evident, or not. Each state may be

represented in a four state context matrix (4-CDM).

53



www.manaraa.com

Chapter 3: Context Models

Figure 3.4 – The 4x4 sixteen state Context Dynamics Matrix (CDM). Showing the two

dimensions influence and perception.

For example, in the Indian village study, the requirement ‘cattle access to water’

indicates a fit when cattle have access to water, and represents a misfit when cattle

do not have access. Therefore establishing a connection between cattle and water

that has either a state of fit or misfit. But using the matrix, cattle not having access

to water must establish evidence of misfit, and when access to water is accessible

as fit, then fit must be also confirmed. Failing to establish fit or misfit results in

the context state of an unconfirmed misfit and the context state of an unconfirmed

fit.

To arrive at a more precise representation, a sixteen state matrix (16-CDM)

based on influence and perception models is proposed. In the context of cattle and

access to water, the influence of water on cattle must first be identified, function

for example, and the level of perception is also identified, say, semantics. Then the

context of cattle’s access to water becomes function based on semantics. Therefore,

fit and misfit is assessed within each context state. A misfit as a result of a function

influence is different from a misfit as a result of a culture influence.

Combining the influence and perception models in Figure 3.1 and Figure 3.2,

respectively, results in the sixteen state matrix (16-CDM). Figure 3.4 shows specific

context states defined along the influence and perception dimensions. The matrix

shows the most strict and most confirmed state at the right upper corner, fit based

54



www.manaraa.com

3.3 The Context Dynamics Matrix

on truth-reality (Fit:R), and ending by the least strict and least confirmed at the

lower left corner, culture based on judgement (C:J).

To demonstrate the sixteen state matrix, the requirement ‘rules about house

not facing south’ of the Indian village is used. According to the rule, and using

Alexander’s model, if the house faces south it becomes a misfit until changed

to another direction. But following such an approach leaves some questions

unanswered, for example: how accurate should the measure of south be? or

how strict is the requirement? These questions may be raised and answered

by modelling the context of the requirement. Using the matrix (16-CDM) the

requirement’s context has one of the following influences:

• Fit: south could be absolute. If the house is not oriented accurately it may

lead to serious consequences.

• Function: avoiding facing south is only one way of achieving a goal, such as

avoiding wind or sunlight.

• Taste-and-passion: avoiding facing south is based on villagers’ preference.

• Culture: not facing south is a tradition held by villagers. While villagers may

follow this tradition, some might choose not to.

Each of these influences could be perceived under the following conditions:

• The influence is based on judgement: with no supporting evidence based only

on conjecture. For example, in the case of fit, by observing that all houses in

the village avoid facing south.

• The influence is based on semantics: supported by a written text or by talking

to villagers.

• The influence is based on theory: supported by credible evidence, the rule is

generalised from a number of houses for the whole village. For example, in

the case of fit, a theory is formed on the effects of houses facing south based

on a number of incidents. The theory is generalised to be a rule for the whole

village and other similar villages, thus supporting the need for accuracy in

implementing this rule.

• The force is based on values: following the rule, or not following it, is enforced

by the municipal authority. In the case of fit, even if effects of the misfit is not

observed, the law still has to be obeyed.

55



www.manaraa.com

Chapter 3: Context Models

• The force based on truth-reality: the rule is confirmed for individual cases.

In the case of fit, for instance, the effects of not following the rule accurately

are observed directly in the village and confirmed to be true for a particular

house.

Having these states associated with the requirement, differentiates fits and

misfits based on context. For example, knowing that a house facing south may

result in real/true (severe) consequences, puts the requirement as a priority over

other possible conflicting needs. Alternatively, knowing that facing south is

particularly not preferred over other directions—that is, north for instance—but

is possible to have some exceptions; thus leading designers/architects to avoid

generalising this requirement for all houses. Accordingly, fits/misfits without these

states are not concrete. Some misfits are relative to local and very specific cases,

and other misfits are general to all cases within the Indian village. In Alexander

[2002], similar emphases on local context is made, by appreciating and using,

differences within the local context to generate living structures. Here, context

is either identified as a local attribute as in taste-and-passion, or as a general

attribute as in fit based on theory.

3.4 Summary and conclusion

The chapter started with a discussion of the concept of force presented by

Alexander [1964] that results in misfits if context forces are not resolved. The

advantage of misfits, as Alexander argues, is that misfits are self-evident. But as

demonstrated by a number of examples, misfits are themselves realised within a

context, and depending on the context, the result of a force is realised whether

to be fit or misfit. Furthermore, fits and misfits based on the context where they

appear, have different degrees of significance for a given design/system problem

under analysis. Following these two observations about context, the context fits

and misfits must be recognised within two models of influence and perception.

Influence represents the context of a force, while perception represents the

knowledge of its influence. To model the influence of context, the force model

is devised. The model divides influence into four forces: fit, function, taste-and-

passion, and culture. To model perception, the knowledge model is devised. The

model divides knowledge into five categories that occupy four levels: truth-reality,

theory, values, semantics, and judgements. To capture the influence and perception

of context in one view, the Context Dynamics Matrix (CDM) is devised. CDM

represents context in sixteen states based on the force model and the knowledge

model.

56



www.manaraa.com

3.4 Summary and conclusion

What is presented so far is a theoretical framework to represent context on

the level of individual system elements, where each context state only represents

one instance of the relationship between two elements in a given time. It is the

aim, however, of this approach to include a wider view of systems’ context, by

representing multiple elements. Accordingly, it is possible to use context states

to analyse the context of multiple system elements.

57



www.manaraa.com



www.manaraa.com

Chapter

4
Context Mapping

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Mapping context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Context representation in DFD . . . . . . . . . . . . . . . . . 61

4.2.2 Context using the unfolding process . . . . . . . . . . . . . . 66

4.2.3 The unfolding process and DFD . . . . . . . . . . . . . . . . . 69

4.3 Mapping context to DFD . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Enriching DFD by context states . . . . . . . . . . . . . . . . 72

4.3.2 The context of the context-diagram . . . . . . . . . . . . . . . 74

4.3.3 The context of DFD-0 . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.4 The context of the unfolding process of DFD . . . . . . . . . 80

4.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . 82



www.manaraa.com

Chapter 4: Context Mapping

4.1 Introduction

In the previous chapter, I have addressed three of the five themes previously

presented in Chapter 2 on context, that context has influence through the force

model, relevance directed by knowledge through the knowledge model, and context

has states through the CDM. Here I build on what was previously presented, and

address the remaining two themes on context, that context manifests in the act

of making connections, and that context regresses endlessly. Both themes may be

addressed by mapping context states to multiple elements within a system.

In software engineering, the most serious attempt to map context, by ad-

dressing the issue of how to limit its regression, and represent it as connections,

is manifested in the use of DFDs. In building architecture, Alexander [2002]

has extended the concept of form synthesis, which he first presented in 1964, to

introduce a general process for architecture, which he refers to as the unfolding

process. Both DFDs and the unfolding process, share some common characteristics

on how to approach context in general. But because the concept of context in DFDs,

as argued before, is approached as system scope and setting boundaries, it has

limitations. Similarly, while Alexander has introduced the unfolding process as

a general process, it has only been applied to building architecture. Thus what

will be attempted here, is to extend the mapping approach by DFD, with context

models of influence and perception previously introduced in Chapter 3, and apply

the unfolding process to map the context of systems.

4.2 Mapping context

A review of DFD and the unfolding process is presented, because both approaches

have emphasised heavily how the concept of context is used within software

and architecture, respectively. But although both approaches address different

concerns, DFD for software, and the unfolding process for building architecture,

they share significant similarities.

Thus before the similarities between DFD and the unfolding process are

discussed, each approach is introduced separately. The discussion of DFD, followed

by a discussion of the unfolding process, will provide a brief review of both

approaches. Finally, a discussion of how the approaches relate to each other is

presented, thereby exposes points of similarity, which could be used to introduce a

new way to represent software systems.

60



www.manaraa.com

4.2 Mapping context

Figure 4.1 – A conceptual DFD context-diagram of a satellite system.

4.2.1 Context representation in DFD

DFD, typically, associates context with the context-diagram of the system that

represents the scope of development, by making decision on what is included in

the analysis and what is not. But as the analysis proceeds to represent internal

system elements, at DFD level zero (DFD-0) for example, the term ‘context’

is not used. Yet, the concept of setting boundaries at DFD levels other than

the context-diagram is still applied, where each process has a boundary that

excludes other processes. Thus processes within the main process represented

by the context-diagram, at a lower level of representation, are individual context-

diagrams in their own way.

Overview of DFD

DFDs limit the description of systems to data flow and process on two levels. First,

on the level of context-diagram, only one process is represented, where the diagram

shows how data flow between the main process and external entities. Second, on all

other levels, starting from DFD level zero, the main process is divided into further

processes, where data flow between processes at the same level, or flow from higher

levels and externally, such as the level of context-diagram. For the purpose of this

overview, what follows uses the example of a satellite system represented in DFD,

to discuss how systems are described on the level of context-diagram, then on the

level of DFD level zero.

Context-diagram of the satellite system: when an analyst represents data-

flow at the context-diagram level, the context becomes limited to setting the

system boundary based on other contextual information inferred by the diagram.

Information such as decisions, people, goals, function activities, sequence of events,

relationships, synthesised in a long process of trial and error [Yourdon 1989]. As

61



www.manaraa.com

Chapter 4: Context Mapping

Figure 4.1 shows, what results from this process is the interaction between the

system and external elements, called terminators, through data communication.

But by setting the boundary of the system in this way, two assumptions are

made. First, that the satellite system, represented as the main process, is the

focus of the analysis. Thus the ground system—differentiated from the satellite

system by the square shape—is an external element, thereby not considered for

analysis, but rather represents a source/sink of data. The second assumption that

may be made, is that the ground system is already developed, and as a result it is

well understood. But if the ground system is in fact not built, the diagram would

not change, because it does not have a way to communicate to the analyst if the

ground system is already developed or not. This brings back the shell problem,

where understanding the ground system is one way to understand the satellite

system.

Another concern that the analyst considers, besides setting the boundary of the

system, is to define how the system interacts with terminators through data. The

diagram shows the satellite system as the central process that receives commands

from the ground system, and sends back telemetries. But typically, the real

communication between the two diagram elements is more complex. For example,

the ground system could send different types of signals to the satellite, some of

them could be summarised as commands, others might not fall into that category.

For example, as the command to upload a new update of the satellite software,

which might be represented separately. The same thing applies to telemetry.

Therefore, when the context-diagram represents how the ground system and the

satellite system communicate, it abstracts out a lot of detailed information.

Generally, the concept behind context-diagrams representing the context for

any system, is summarised by the following:

• Focus on the big picture, the context is not in the detail. By extracting the

most fundamental features of the system, the context-diagram focuses on the

big picture, rather than listing every relevant detail. This solves the problem

of information cluttering that might distract the analyst from understanding

the system’s mission.

• Select a view of the system and describe its context. Data and process is

only one view of the system, thus its context is not the entire context of

the system but of that view. For example, the diagram does not consider

the order in which data is sent between the system and terminators. It

also does not consider the influence of states on actions. Questions that the

context-diagram of the satellite system may not answer include: does the

ground system send the same commands in all of its states? or does each

62



www.manaraa.com

4.2 Mapping context

Figure 4.2 – Satellite system data flow level zero.

state have its own commands? Similarly, does the satellite system accept

commands in all of its states or particular commands for particular states?

• Focus on the system of interest and ignore any interactions between termina-

tors. The context of the system is only understood from the direct interaction

between the analysed system and external elements or terminators. Other

interactions are not relevant, because they are not directly related to the

analysed system. Although such interactions are part of the general meaning

of the word ‘context,’ and might have an influence on decisions within the

system, they are excluded from being represented in the diagram.

DFD level zero of the satellite system: Figure 4.2 shows the data flow

and processes at level zero. The diagram describes a series of major processes

within the satellite system, mainly scheduling commands for future execution and

63



www.manaraa.com

Chapter 4: Context Mapping

downloading telemetry requests. At this level, the diagram starts to represent,

in more detail, what was abstracted out of the context-diagram. The single data

flow represented by the context-diagram as ‘command’ is now divided to two data

flows: command list and telemetry request. From the process ‘schedule tasks,’ it

is possible to recognise that the ground system sends commands that the satellite

executes according to a predefined sequence set by the ground system. This is

different, for example, from ‘execute commands’ where the command is executed

without a schedule. But all of this information is only interpreted from a general

understanding of the context of the system that the mission provides, or building

from background knowledge of similar systems, combined with what the diagram

indicates through the names of each process.

But the diagram still follows the same approach to context. The context

of each process and data flow is determined in relation to other neighbouring

elements/processes. For example, the process ‘execute commands,’ in a way similar

to the main process in the context diagram, sets a boundary for what is included

in the process and what is not. The context of the process is understood, primarily,

from data flow, such as ‘telemetry request’ as the context of ‘execute commands,’

and to a less degree, from other processes such as ‘download telemetry data.’ The

diagram also excludes terminators, but indicates them by data flow that comes and

goes to and from outside the figure, at the previous level of context. By comparing

the context-diagram to DFD, at this level, DFD shows further detail. For example,

the DFD shows data storage that was not shown in the context-diagram, and also

breaks down command data flow into command list and telemetry request, that

was shown as command at the context-diagram level.

An additional point to add, is the more important role that semantics play

in DFD levels that proceed the context-diagram in how analysts understand the

system. Because the context-diagram has only one process to describe, the name

of the process and its data tells a less interesting story about what the system

is all about. But at level zero, names of processes and data flow, allow the

analyst to expand on the understanding of the context of the system through to

semantical referrals. For example, ‘schedule commands,’ or ‘download telemetry

data,’ expand on the understanding that the diagram gives, compared to what

the context-diagram represents, which indicates that a ‘command’ is sent and

‘telemetry’ is received. Because processes start to have actions and more complex

sentence structures, they open a new dimension to the context of the system that

may add meaning and clarity.

64



www.manaraa.com

4.2 Mapping context

Limitations of DFD

The main limitation of DFD, as presented previously, is that its concept of context

is synonymous to the concept of setting boundaries. This is not only shown by the

context-diagram, where the term context is used to denote the act of scoping the

system, the same act of setting boundaries is followed by other processes at level

zero, and within process decomposition and detailed expansions. Each process has

internal elements, which are not shown at the same level, and other neighbouring

processes that are external to it. Other limitations are discussed as follows:

• Elements share the same level of perception: perception, as context dimension,

is not represented in DFD on all levels. Elements within the diagram may

show the same perception level, if any level can be derived at all. Note

that perception, here, should be understood within what was introduced in

Chapter 3. Because by decomposing elements, to show further processes

and data flow, from one DFD level to the next, enhance the perception of the

system as a whole. But such enhancement when it occurs, is not represented

by the model itself. For example, it is not possible for analysts, when they

construct a context-diagram, to share their doubts or confidence in the state

of affairs of how elements relate to each other within the diagram.

• Has limited reference to external context: except in limited semantic refer-

ences, DFD elements have no reference to the system context other than

the data and process that the diagram represents. Accordingly, the DFD

represents a closed system. For example, if the DFD represents a process that

verifies an entered password, it may not refer, in the diagram, that there is a

possibility that the system may reject the entered password. In the case if the

rejection is not represented, it may only be realised by the analyst through

the semantic reference of ‘password,’ where the analyst would know what to

be expected when a password is entered—either it is accepted or rejected.

But without this semantic reference to the meaning of ‘password,’ and what

operations are associated with the meaning of the word, that possibility of

rejection may not be obvious.

• Does not have any reference of where/how system elements may vary: looking

at a DFD diagram it is not possible to decide what or how to vary system el-

ements, notwithstanding semantic references from data flow or process. But

a well represented DFD that does not indicate implementation technologies,

may allow system designers to vary the design of the system around the same

DFD representation. But the DFD does not indicate if or where within the

diagram that the system may vary.

65



www.manaraa.com

Chapter 4: Context Mapping

4.2.2 Context using the unfolding process

Alexander [2002] introduces the unfolding process as a stepwise approach to design

based on a close observation of changes in context. Unlike Alexander’s previous

work, the unfolding process distinguishes between the context of local elements

and the context of the system as a whole. As mentioned earlier, the concept of

structure preserving introduced by Alexander maintains a relationship between

the local context and overall context of the process of building. The ultimate aim

of the process is to support this relationship, in which the local context becomes

harmonious with the global context. Alexander goes further to suggest that the

role of the local context is to support the global context. The result of this process

is to achieve building structures that have more life.

In addition to maintaining the relationship between the local and the global

context, the process places a strong emphasis on observing changes in the local con-

text each time a new element is added to it. The process, then, recognises changes

to the context that results when elements are added or removed. According to

Alexander, the process continues to be a series of adaptations and transformations,

that evolves piecemeal with each new element added.

The unfolding process is based on two fundamental concepts: the concept

of centres, and of piecemeal incrementation. But the two concepts are related,

because as the process adds or removes centres continuously it: increments,

transforms, adapts, and differentiates the living structure piecemeal. While this

process is ongoing, it also preserves its structure as a whole.

The concept of centres

Alexander [2001] identifies ‘centres’ as building blocks of the unfolding process. A

structure is enhanced, and made more whole, as the unfolding process performs

certain moves that transform the structure. Alexander argues that these moves

are countless within nature. The examples that Alexander gives to support his

argument, are drawn from natural phenomena, observed in biology and physics,

and within physical form that were created, mostly, by traditional societies. Much

of what these examples appear to show, Alexander argues, is a complex system of

centres and centres of centres that have a geometric order, a configuration of some

kind, which makes structures appear to be more whole, more living.

But to answer ‘what are centres?’ does not seem to be a trivial exercise, because

the answer includes the use of the concept of wholeness, yet another problematic

concept. Yet, Alexander solves this enigma by stating that a centre is what

results when the sense of the whole is combined with the parts within a certain

66



www.manaraa.com

4.2 Mapping context

Figure 4.3 – The use of THICK BOUNDARY

and LOCAL SYMMETRY to enhance the design

of the ornament.

configuration. The result is a centre

that acts as the whole, and centres

that act as parts. For example, the

satellite system is a centre formed by

other centres, such as the data flow

of ‘telemetry request,’ and the process

‘schedule tasks’.

But the reason that Alexander uses

the term ‘centre’ instead of ‘whole,’ has

particular significance to the issue of

the ‘unboundness of context’ identified

as one of the problems of context in

Chapter 2. Alexander recognises that

the term ‘whole’ has a sense of marked-

ness that cannot be accurately identi-

fied for each centre. This is because it

is not possible to set an absolute bound-

ary between elements of analysis. Thus

the use of the term ‘centre,’ implies that

the analysis should always recognise

that the context regresses endlessly.

Centres also relate to what Good-

win and Duranti [1992] have identi-

fied as focal events, and focal points

[Alshaikh and Boughton 2009]1. But

there is a subtle difference between a

centre and a focal point. A centre exists

in relation to other centres within the

context independently from the scope of

analysis or the attention of the analyst.

But a focal point is the result of the

awareness of a centre. Thus when a

centre becomes fixed as the focus of

1When reviewing the part that Alexander [2001] first introduces the concept of centres, at the

end of the section, Alexander remarks that he sees centres as focal points within “a larger unbroken

whole”. This shows that there is a kinship between what I identify as context and what Alexander

[2001] recognises as a whole. But there is yet another difference between the use of the term ‘whole’

and ‘context.’ The ‘whole,’ according to Alexander [2001], what might be identified as the larger

context, to be distinguished from the immediate context. Thus the role of mapping context is to be

able to capture the larger context within a system by cumulating local contexts

67



www.manaraa.com

Chapter 4: Context Mapping

analysis, it then may be recognised as a focal point.

Accordingly, when the focus is set on a centre, the analyst must evaluate the

strength of the centre. Alexander presents the unfolding process as a series of

transformation acts, where latent centres are transformed into strong centres.

But the evaluation of the latency or strength of a centre is not evaluated through

the centre itself. on the contrary, it is evaluated through other centres, or what

Alexander identifies as the ‘whole.’ If multiple centres have the quality of life

within a structure, the one which has less life would be a weaker centre. Life,

as Alexander sees it in his view of building architecture, emerges as a result

of a certain configuration within space. Thus Alexander [2001] defines fifteen

geometric properties that enhance the life of structures. When a centre is evaluated

as latent, an architecture may use one or multiple combinations of the fifteen

properties to transform the centre to make it ‘more living,’ hence stronger.

For example, two of the fifteen properties that form structure transformations

that bring life to structures are the the property of THICK BOUNDARY and LOCAL

SYMMETRY. To demonstrate how to enhance a centre using these two properties,

consider Figure 4.3, which is shown a series of transformations that starts from

a simple ornament (D1). The first step to enhance D1 is to transform it by

adding another ornament (D2) to form a LOCAL SYMMETRY. The ornament in

D2 has more life than D1. Another transformation seeks to enhance D2 further

by adding another symmetry. Thus D2 is enhanced further when it is transformed

by reconfiguring the ornament by forming a vertical symmetry (D3). In D4, THICK

BOUNDARY is used. Each circle is enhanced further by adding a THICK BOUNDARY.

But to enhance the circles further as a whole, THICK BOUNDARY is used again

in D5. In D6, THICK BOUNDARY is made even thicker, hence transforming the

boundary set in D5. Adding another boundary to D5 created a new centre that

emerged from the THICK BOUNDARY itself. The new centre is enhanced further

by LOCAL SYMMETRY in D7. Notice that the transformation process continues

to evaluate each step to identify latent centres, which motivated adding points

within the THICK BOUNDARY using LOCAL SYMMETRY. While THICK BOUNDARY

transformed D5 to produce the more living D6, it also produced further areas

that need to be transformed again. This is typical of continuous adaptation and

transformation that the unfolding process follows.

Piecemeal incrementation

The unfolding process performs piecemeal incrementation by continually evaluat-

ing the context with each element that an analyst adds. The process starts when

the analyst evaluates the ‘whole’ to identify latent centres, then identifies an action

68



www.manaraa.com

4.2 Mapping context

that transforms the centre into a strong centre. When the new element is added,

a new configuration emerges, which is evaluated to be reconfigured again. This

process of evaluating and transforming, happens in a gradual manner. The result

is that the structure, or the configuration of the whole, runs through a piecemeal

process that evolves the system of centres.

Figure 4.3 is a good example of how a structure evolves piecemeal. From D1–

D7, each new increment is the result of how the previous step is configured, and

how it is evaluated. In D3, for example, it is clear that the four circles have a

thin outline. Because the thin outline is perceived to result in a latent centre, the

chosen action to make it a stronger centre is to thicken the circle’s outline, following

the THICK BOUNDARY property. However, because the intention is to enhance the

whole, not only one circle is transformed, but all of the circles. This is also followed

by the frame added in D5. To add the frame around the circles, does not enhance

one centre, but enhances all the circles.

But Figure 4.3 does not necessarily show all the steps that go into moving

from D1 to D7. For example, the steps to move from D1 to D2 may be broken

down further into sub-steps. The first move is to add a circle beside D1 to form a

symmetry. But if the new circle is added without a dot, the whole then becomes

a broken symmetry. Even by adding the circle there is more work to be done,

the whole is not yet complete. The conclusion that the symmetry is broken comes

because after each move, it seems natural to evaluate it, and ask how to enhance

it further.

What is maintained for every series of steps, as Alexander [2002] emphasises,

is to preserve the structure with each transformation. For example, in Figure 4.3,

starting from D3, all of the moves maintain a sense of coherence of the whole that

preserves what is there and enhances further. In D4, the boundary of all of the

circles are made thicker, not only to one or two, but to all the circles. Similarly,

D5 sets a boundary around all the circles, not just part of it. Thereby the process

continues to preserve what is done in the previous steps and to enhance it.

4.2.3 The unfolding process and DFD

Although the unfolding process is applied to building architecture, Alexander

[2002] argues that it is a process of life that applies to more than building

structures. In fact, when the unfolding process is compared to DFD, it is possible to

find some parallels. What is attempted here, is to interpret the unfolding process

to explore how to apply it to the analysis of systems.

DFD diagrams represent processes that are similar to what Alexander identi-

69



www.manaraa.com

Chapter 4: Context Mapping

fies as centres. Within the diagram, a process is part of a larger and higher level

process, and in itself, is formed by lower level processes. Similarly, a centre is

part of a larger centre and in itself is a centre formed by smaller centres. Thus, the

unfolding process suggests that it starts by forming a main centre, then unfold new

centres from the main centre. Alexander [2002] gives the example of the Japanese

tea house, where the tea house is first placed in a secluded garden. The secluded

garden is then divided into two gardens: an outer garden that has a dwelling, and

an inner garden that has the tea house. The process then continues to describe

what elements are within the outer garden and the inner garden, other than the

dwelling and the tea house. Both gardens in this example are centres, which allow

other centres within it to emerge, such as the dwelling and the tea house. This

is essentially what the analysis of the satellite system using the DFD does. The

satellite system, as the main process in the context-diagram, is the main centre for

the system. Other processes emerge from this main process at diagram level zero,

such as ‘schedule tasks’ and ‘execute commands.’

Both examples, the Japanese tea house and the satellite system, show two

significant parallels. First, both approaches allow the analysis to regress endlessly

into infinite number of centres and processes. This is either by expanding the

boundary of the main centre or process, to regress outward, or to follow what

centres and processes emerge internally. Second, both approaches preserve the

structure of the whole, as each centre or process preserves the centre or process to

which it belongs. For example, in the context-diagram, the main process ‘satellite

system’ has processes within it that preserve its structure. The way the structure

of the process is preserved, manifests itself in processes that act coherently when

they handle data flow that come in and out of their parent process, in this case

‘satellite system.’ If a process does not handle a data flow from the main process

‘satellite system,’ or sends a data flow that the context-diagram does not show,

then that process does not preserve the structure of its parent process. Similarly,

for the Japanese tea house, the dwelling within the outer garden, preserves the

structure of the outer garden by being within its boundaries, not for example to be

placed between the outer and inner garden. In both cases, the tea house and the

satellite system, the role of preserving the structure is not performed by one centre

or process, but by the work of multiple centres within a centre, or processes within

a process.

But there is a significant difference between the unfolding process and the

typical use of DFD. DFD are typically applied to data and process, while the

unfolding process has no such limitation. It is true however, that the DFD is not

limited to technology, processes do not have to be computer processes, and data

may not be digital but ‘material.’ Processes may be actions performed by people,

70



www.manaraa.com

4.3 Mapping context to DFD

Figure 4.4 – Context states added to a DFD diagram.

and data may be tangible elements, such as office paper. But DFD only represents

the functional aspect of the system, and does not represent other system concerns,

such as quality, business goals, and constraints. The unfolding process, on the

other hand, is detached from the theory of the fifteen properties. As a result, it is

possible to apply the unfolding process without using the fifteen properties.

Another notable difference is how DFD limits the analysis from extending

externally or internally. The DFD limits the analysis externally by setting the

boundary of the system using context-diagrams, and internally by requirements,

as the analyst decomposes the system functionally until all requirements are

represented. But no such limit is posed for the unfolding process. In fact, the

unfolding process does not dictate how to start the process: the design may unfold

outwardly or inwardly, bottom-up or top-down. But DFD starts by realising the

system from the top at the context-diagram and decomposes the system, in a

top-down process. The unfolding process, however, as Alexander [2002] presents

it through several examples, may be bottom-up, such as the ornament example, or

top-down, such as the traditional Japanese tea house.

4.3 Mapping context to DFD

The concept behind representing DFD, as discussed previously, is to set context

at context-diagram level of analysis to identify boundaries and set system scope.

But the same concept is also used iteratively for other more detailed levels

71



www.manaraa.com

Chapter 4: Context Mapping

of analysis. What resulted from this approach is that the analysis became

limited to the functional data-process view of the system. Accordingly, DFD has

limited what is relevant to its representation, temporarily perhaps, to data flow

and process, without necessarily undermining the importance of other equally

important system aspects that are relevant to the system.

For example, while DeMarco [1979] limited the description of requirement

through data and process, Hatley and Pirbhai [1988] extended DFD to represent

states and events for realtime systems. Originally, DeMarco [1979] presented DFD

to describe the system as an idle machine. Issues, such as order of processes, are

not identified by the analysis. But Hatley and Pirbhai [1988] describes in terms

of states and events in realtime systems. Hatley and Pirbhai [1988], for example,

describes the role of sensors and control, in addition to process and data flow, which

DFD traditionally represent. Thus, it is possible to determine from the DFD which

process is invoked as a consequence to an event.

Similarly, what follows shows how to use context states to enrich the repre-

sentation of data flow and process when the diagram identifies the influence and

perception of context in terms of context states. The approach to use context states

is demonstrated by the example of the satellite system represented in DFD.

4.3.1 Enriching DFD by context states

DFD satisfies two themes identified, that context is an act of making connections,

and context regresses endlessly. The first, the act of making connections, is

manifested in data flow between processes and terminators, and the second, that

context regresses endlessly, is manifested in how processes may extend internally

and externally. Therefore, when context states are added to DFD, the enriched

diagram that results satisfies the five themes of context identified from literature,

for example: Foucault [2002], Scharfstein [1989] for perception and kwnoledge,

Alexander [1964] for influence, Kristeva [1990] context as connections, Kazman

et al. [2005] for context states, and Culler [2009] for context regression.

Figure 4.4 shows how context states are mapped to the original DFD notation.

Context states are expressed in terms of the two dimensions: influence and

perception. They allow the analyst to express the context of each element within

the DFD more accurately. For example, in Figure 4.4, the terminator places a force

of function (Fun) based (:) on judgement (J) on data, which flows from terminator

to process. In this case, terminator requires from data to satisfy the function goal

of sending the data. But because this influence is based on judgement, it might

be false. Thus, the state implies that the function might be the influence that

terminator applies on data. Because it is based on judgement, the analyst may

72



www.manaraa.com

4.3 Mapping context to DFD

signal to who ever reads the DFD to verify if the influence is truly function, or

accept that there is a chance that this influence may be wrongly identified.

What the use of these context states with DFD suggests, is how an analyst

can enrich the diagram with other information other than what the system does.

The analyst may indicate that ‘data,’ for example, may only flow to the process

successfully if it flows at a particular speed, otherwise it would not be useful. Such

influence is identified in the context matrix as fit. If the analyst chooses to use the

original DFD notation, all context states would be expressed as function, even if

the analyst’s knowledge about the context of terminator and data tells him or her

otherwise. Furthermore, the analyst may indicate how the influence was perceived.

Is it a personal or professional judgement that has no support from requirements,

or is it supported by requirement statements and a well known theory or model?

Each context state may raise questions as much as it provides answers. A

context state that shows an influence of taste-and-passion may answer who is

interested to have this requirement satisfied in a particular manner. A data to

be sent at a particular speed may only be as a result of a stakeholder’s preference,

not a system constraint.

When analysts add context states to connections, they add other elements

external to DFD to the diagram. On the influence dimension, if fit is assigned,

it points to objects that enforce the influence of fit (Fit), such as an authentication

model. If function (Func) is assigned, it points to a goal that must be achieved

by any means. If taste-and-passion (T&P) is assigned, it points to a preference

of an individual, either a stakeholder or a system developer. If culture (C) is

assigned, it points to the general public, to history, to a large group of people within

an organisation, or a community. Similarly, on the perception dimension, when

judgement (J) is assigned, it points to the level of perception associated with a

person or a group of people. If semantics (S) is assigned, it points to a particular

statement, such as a requirement or a scenario. If a theory (T) is assigned, it

would point to a series of statements, a model of requirements, a specification, or

a system goal, which supports the influence and perhaps describes it in detail. If

values (V) is assigned it would point typically to a law or a business rule, and if

truth-reality (R) is assigned, it would point to realised objects in reality, current

events, or self-evident truths.

Therefore, context states add various concerns that the DFD have temporarily

deemed not to be relevant, as analysts wish to describe what the system functions

are through data and process. Accordingly, analysts may choose to expand on

the functional description of the system using context states, to either extend

the whole DFD or part of it. For example, it is possible to extend the context

73



www.manaraa.com

Chapter 4: Context Mapping

Figure 4.5 – Context states assigned to the satellite system context-diagram

information of the context-diagram alone, or elaborate on the context of parts of

the DFD-0. Because what the DFD describes normally are functional aspects of

the system as described by requirements, it is possible to classify each element of

any DFD diagram to be in the context state of function based on semantics. Thus

function based on semantics is the default context state of any DFD diagram. But

because that is not always the case, other context states may be useful to use when

some system element are influenced by forces other than function, or based on

perceptions other than semantics.

4.3.2 The context of the context-diagram

Context-diagrams are typically used to determine the boundary of a system, but do

not model context in general. They also limit how to describe the system, because

context-diagrams only show a single process, data flows, and terminators. But if

analysts assign context states to context-diagrams, without interfering with the

process of setting the boundary of the system, it is possible to have a context-

diagram that relates more to the system a significantly broader view of context

than DFDs typically provide.

Consider the context-diagram of the satellite system example. Figure 4.1

shows the interaction between the satellite system as the main process and the

ground system as an external entity. Using the context-diagram as a whole, it is

possible to build a partial understanding of the context of the system through data

and process. But the diagram only implies the context of ‘command’ or ‘telemetry,’

for example. If the context of ‘command’ is to be identified, its context is formed

by its connection with ‘ground system,’ on one side, and ‘satellite system’ on the

other. Thus the context of ‘command’ is identified within the context-diagram when

it is assigned context states relative to ‘satellite system’ and ‘ground system,’ as

Figure 4.5 shows.

In Figure 4.5, command has two contexts: its context relative to the satellite

system, and its context relative to the ground system. The context of ‘command’

74



www.manaraa.com

4.3 Mapping context to DFD

relative to ground system, shows that ‘command’ is influenced by ‘ground system,’

while ‘command’ has no influence on ‘ground system’. The influence of ‘ground

system’ is function based on judgement. What this means, is that although there

is a good reason to identify the influence of ‘ground system’ on ‘command’ to be

function, but because this fact cannot be supported, or verified by requirements, or

any theory or goal, it is recognised according to the judgement of the analyst. Thus

the influence of function may be fit, or taste-and-passion, if the judgement is wrong.

On the other hand, the context of ‘command’ relative to ‘satellite system,’ has two

directions. First, the context of ‘command’ on ‘satellite system,’ which is function

based on judgement. Second, the context of ‘satellite system’ on ‘command,’ which

is fit based on judgement. The first state indicates that the ‘satellite system’ has

to satisfy the goal of sending the command. For example, if the command requires

from the satellite to download data to the ground system, it may download it in any

way possible, as long as the data is delivered to the ground system. But because the

satellite system applies a force of fit on ‘command,’ the satellite system will only

achieve the goal of ‘command,’ if the command fits a certain condition. Otherwise,

the goal of sending a command will not be achieved. The condition may be, for

example, to obey a certain format, such as an encryption protocol. But because

both influences are based on judgement, they may still vary.

Thus the three context states that the extended context-diagram show, have

specific implications on system variation. Influence implies the degree that the

system may vary, and perception implies how the influence is identified. For

example, one possible scenario where the force of fit that the ‘satellite system’

applies on ‘command,’ relates to the structure of ‘command.’ If ‘satellite system’

only accepts one structure for every ‘command’ it receives, then for the ‘command’

to be processed or accepted, and ultimately for the goal of sending the command

initially to be achieved, it must fit that structure. Accordingly, the context state

indicates this context through the influence of fit. Fit, then, implies that ‘satellite

system’ will not accept a command that has a varied structure, from the command

structure it knows about. It also indicates that as long as the influence is fit, failing

to meet the structure demands that ‘satellite system’ enforce, should lead to fail to

achieve the goal set by ‘ground station’ for sending a command. But because the

force of fit is based on judgement, what is required from the analyst is to verify

whether the judgement that the force that ‘satellite system’ applies on ‘command’

is true.

Figure 4.6 shows the context states of the context-diagram mapped to the

white cells of the CDM: ‘command’ on ‘satellite system’ (C<SS), ‘satellite system’

on ‘command’ (C>SS), and ‘ground station’ on ‘command’ (GS<C). The cells with

light grey are the first possible state transitions that may occur for the elements

75



www.manaraa.com

Chapter 4: Context Mapping

Figure 4.6 – Context states of context-diagram at Figure 4.7 mapped to CDM.

within the white cells. The arrows show the target state transitions. For example,

the context state of ‘satellite system’ on ‘command’ (C<SS), should transit from fit

based on judgement (Fit:J), to fit based on semantics (Fit:S). For context state, if

the judgement is agreed upon, it may be documented. But another possible state

transition that may result from reviewing the judgement of fit, is to recognise

that the judgement was wrong. As a result, another judgement may be made,

such as to judge that the influence is taste-and-passion, which leads to a context

state transition. When the context state transits to taste-and-passion based on

judgement, analysts should aim to transit the context state to taste-and-passion

based on semantics.

What analysts should aim to, as they identify the context state of the system,

is to achieve at least the default context state of DFD, that is function based on

semantics. Other context states, such as taste-and-passion based on semantics,

may serve design purposes more than analysis purposes. For example, it is possible

to identify a command to be sent at a certain rate of speed. But what DFDs

typically represent, is to express the functional aspect of the requirement, which

is the function of sending the command. Thus the requirement becomes functional

when the rate of transmission is not considered. But with context states, it is

possible to indicate that in addition to the functional aims to send a command,

there is an additional aim, derived by preference, to send the command at a

certain speed. Indeed, other functional requirements may have preferences, but

76



www.manaraa.com

4.3 Mapping context to DFD

Figure 4.7 – Context state of telemetry command.

not necessarily expressed at the analysis level. What analysts typically do, when

they analyse the system in DFD, is to regard these preferences to be irrelevant to

analysis, even if they are available to the analyst at the time of building the DFD.

Therefore, in the context-diagram of Figure 4.5, only context states that have

states other than function based on semantics are identified. Accordingly, the

diagram shows the context states relative only to ‘command,’ because their states

are not function based on semantics, compared to ‘telemetry’ in the same diagram,

for example.

4.3.3 The context of DFD-0

Similar to context-diagrams, DFD-0 continues to describe the system using data

and process, but show new elements, such as data storage, which context-diagrams

do not show. Accordingly, when DFD-0 is enriched by context states, it is expected

to show similar results to what is expected from context-diagrams when they are

enriched by context states, themselves. But because DFD-0 are typically more

complex, as they show more than one process, the need for context states should be

greater.

When the context-diagram process unfolds, it shows the internal processes

that the context-diagram hides, and produces DFD-0. At this new diagram

level, and other levels that unfold from its processes, process and data store are

represented in a similar fashion to the main process and external entities at the

context-diagram level. But unlike data flow at the context-diagram level, data flow

at DFD-0 and other subsequent levels, have two forms: data that flow between

processes at the same level, and data that flow in or out of the diagram, to and

from a higher level process. For example, the DFD-0 of the satellite system (see

Figure 4.2), shows ‘telemetry command’ that flows between ‘execute commands’

77



www.manaraa.com

Chapter 4: Context Mapping

Figure 4.8 – Context state of telemetry request.

and ‘download telemetry data,’ and other data that flow either from outside the

diagram, such as ‘telemetry request’ to the process ‘execute command,’ or flow

towards outside the diagram, such as ‘telemetry’ from ‘download telemetry data.’

Although both types show a subtle difference, they show a difference on how their

context states are assigned. Data that flow between processes on the same level

have two context states, one at the sender’s end and a second at the receiver’s end.

But in the case of data that flow from or to outside, the diagram only shows the

context state at one end, that is the data flow and the process of the depicted level,

and hides the process and its context state at the higher level. To illustrate the

difference between the context of both data flow types, consider the example of

‘telemetry command’ and ‘telemetry request’.

Figure 4.7 shows the context of ‘telemetry command’ that flow between

‘download telemetry data’ and ‘execute commands’. The context states that the

diagram shows, indicate that ‘telemetry command’ influences ‘download telemetry

data,’ but not ‘execute command’. But both processes, ‘download telemetry data’

and ‘execute commands,’ influence ‘telemetry command’. Telemetry command’s

influence on ‘download telemetry data’ is taste-and-passion based on semantics

(T&P:S), which indicates that the demand of the data flow in this case is only

preferred. Accordingly, if the preference is about the speed of sending ‘telemetry

command,’ analysts and designers should know that it is possible to vary that

speed if needed, because it will not result in failing to process it. Similarly,

‘execute commands’ applies a taste-and-passion influence on ‘telemetry command’

based on semantics (T&P:S). If the preference is about the structure of ‘execute

commands’ to achieve better processing speed, for example, analysts may have a

better understanding of the consequences when the command structure is changed.

‘Download telemetry data,’ however, places an influence of fit on ‘telemetry

78



www.manaraa.com

4.3 Mapping context to DFD

Figure 4.9 – Context states of DFD-0 at Figure 4.8 mapped to CDM.

command’ based on semantics (Fit:S). It indicates that ‘telemetry command’ will

not be processed unless it fits a certain demand placed by ‘download telemetry

data,’ such as passing a fit to send test—size of the telemetry to be downloaded

checked against destination, for example.

The context of ‘telemetry request’ is different from ‘telemetry command,’

however. As Figure 4.8 shows, ‘telemetry request’ is not recognised fully by a

single diagram. Because ‘telemetry request’ is shared by two diagrams, identified

as ‘command’ at the context-diagram level, and as ‘telemetry request’ at DFD-0,

only the context state that is relevant to the depicted diagram level is shown.

Thus the diagram shows the context of ‘telemetry request’ relative only to ‘execute

command,’ since the external element that sends ‘telemetry request,’ ‘ground

system’ at the context-diagram, is not shown at DFD-0.

‘Telemetry request’ places an influence of function on ‘execute command’ based

on judgement. The context state indicates that ‘execute command’ is required only

to execute the command properly. But because ‘function’ is based on judgement, the

context state is declared to alert analysts to confirm the influence. If the perception

of the function is not increased to semantics, analysts may at least indicate that

the influence may not be identified correctly. Thus, analysts may work to confirm

their judgement as they work with stakeholders to identify whether the influence

is truly function.

79



www.manaraa.com

Chapter 4: Context Mapping

Yet, there are two aspects that are worth noting about context states of

elements that share two diagram levels. First, because the data flow at the

context-diagram may unfold into more than one data flow, context states vary

between the two levels of representation. At the context-diagram, for example,

‘command’ has different context states than ‘telemetry request,’ although the latter

has unfolded from the former. ‘Command’ is influenced at the context-diagram by

‘satellite system,’ but ‘telemetry request’ is not influenced by ‘execute commands’

at DFD-0. This is because ‘satellite system’ influences all commands sent by any

external element, but after a command passes this level, and becomes recognised

as a specific command, it becomes influenced by another process. The second

aspect worth noting, is how the influence of data flow on the main process at the

context-diagram may not change when the data flow is represented by a lower

level diagram. Because the demands that the data flow place on the system

originate, initially, from elements outside the system, such as ‘ground system,’ they

influence the system as a whole, and do not pertain to a specific internal process.

In summary, the change in internal processes should not result in the change of

the demands placed by external elements, but may result in the change of their

influence that they place on external elements.

Figure 4.9 shows the possible state transitions of context states assigned to

Figure 4.8, mapped in CDM. The figure shows, for example, that the influence

of ‘telemetry command’ on ‘download telemetry data’ is taste-and-passion based on

semantics, but may need to transfer to taste-and-passion based on theory or values.

Although the influence may still transfer back to judgement, if the semantic

statement that supports the taste-and-passion influence in nullified, analysts may

rather support the influence further by a goal or a business rule. Similarly, other

context states may show the same tendency, whenever possible, to transfer context

states along the perception dimension. As a first priority, then, is for analysts to

identify influences at the level of semantics, according to requirements. A further

state transfer that analysts may seek to achieve, is to identify influences beyond

semantics, to the level of theory or values. This way, analysts identify the context of

the system, further than what typically DFD represent. This move to more precise

knowledge about the context, prepare the move from analysis to design.

4.3.4 The context of the unfolding process of DFD

When context states are used to represent the context of system elements in DFD,

they may allow analysts to follow the unfolding process on a more granular level.

To describe a system in DFD, analysts follow a layered approach that starts at the

context-diagram, and virtually has no limit of how many levels it may produce. At

80



www.manaraa.com

4.3 Mapping context to DFD

Figure 4.10 – The context of satellite system before adding data flow.

each level, steps are formed by an interplay of adding process then data, or data

then process, in no specific order. But with the use of context states it is possible

to separate the step of adding process from data by recognising the context state in

between.

Because the unfolding process promotes analysts to observe context as closely

as possible, context states allow analysts to represent the context of the DFD at

each level before and after adding data flow. In the context-diagram, for example,

it is not possible to describe the system at a higher level than the context-diagram.

But with context states, it is possible to represent the context of process and

terminators without using data. The question then becomes, regardless of data

flow, whether there is a connection between the system and its external elements,

and within what context, before deciding how the system and its terminators may

communicate.

As a result, the context-diagram may be built in two steps. First, identify

the context between the system to be developed and its external elements. Second,

after identifying the context connection, identify how the developed system interact

with its terminator through data. Figure 4.10 shows the context of the interaction

between the ground system and the satellite system at a higher level, before the

diagram describes how both elements interact. What the diagram shows, is how

the satellite system relates to the ground system. It indicates that the satellite

system demands fit from the ground system, when the ground system initiates an

interaction. When the diagram at Figure 4.10 is translated into a context-diagram

enriched by context states, the influence of fit placed by the satellite system may

be mapped to the influence of fit placed on the data flow by the satellite system, as

Figure 4.7 shows.

Similarly, it is possible to represent other processes, at the level of DFD-0 for

example, before data flow are added. When processes are separated from data

flow, it is assumed that data flow may vary while processes remain less variable.

Processes are more stable because they are formed by other processes within. Thus

one sign of internal change is the change of inputs and outputs. Therefore, there is

81



www.manaraa.com

Chapter 4: Context Mapping

value, especially when the issue of variability is addressed, to represent the context

of how processes relate to each other.

The diagram in Figure 4.10 shows a ‘pre-thinking’ stage of system analysis

that reveals the initial context that results from composing ‘ground system’ and

‘satellite system.’ This initial context view of the system, allows the diagram to

represent the context of the system beyond ‘ground system,’ hence providing an

extended view of external entities. Even at this level, the separation between the

‘ground system’ and the ‘satellite system’ show architectural implications. Because

elaborating on the specific form that the separation between both system elements

may indicate the initial architecture view of the system. As a result, through the

view that Figure 4.10 show, it is possible to proceed with the analysis with the

following steps:

1. Evaluate the relationship between the ‘ground system’ and the ‘satellite

system.’ At this step the analysis may involve exploring the external and

internal process within the system and neighbouring systems, which starts

from the view that Figure 4.10 provides.

2. Translate the requirements to produce a functional view of the system using

data and process. This is performed by the traditional DFD view.

3. Use the DFD functional view, requirements, and system goals, to produce a

design solution that achieves the functional aims of the system, and other

non-functional aims.

4.4 Summary and conclusion

Two of the context themes identified from literature were represented by adapting

two approaches to system analysis, DFD and the unfolding process. The first

theme, context as an act of making connections, is manifested in data flow

that connect processes in DFD. The second theme, context regress endlessly, is

supported by the unfolding process, where elements are added in a stepwise

process while maintaining a close observation of changes in context. Thus to

represent the five themes of context identified from literature, an approach to

enrich DFD using context states of the CDM is presented.

Although DFD diagrams share similar attributes with the unfolding process,

they limit context to the concept of setting system boundaries. But when context

states are added, it is possible to have a model that relates more to the context

of the system than what the classical representation offers. Another extension

82



www.manaraa.com

4.4 Summary and conclusion

of how the DFD represents the developed system, is manifested in the analysts’

ability to represent the context of the system independently from data flow. As a

result, it becomes possible to reason about how the system may vary before and

after data flow are represented. The use of context states in this manner, is shown

in the example of representing a context-diagram on a higher level by having a

process and terminators without data flow, but connected with context states. The

unfolding process then is followed, when analysts assign context states between

processes first, then add data flow second. Both levels of representation introduce

different views on how to vary the system on the level of DFD data and process.

83

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Part

III
Proof of Concept and

Conclusion

Notes on the Synthesis of Context A novel approach to model context inالعنوان:
software engineering

.Al Shaikh, Ziyad Aالمؤلف الرئيسي:

Boughton, Clive(Super)مؤلفين آخرين:

2011التاريخ الميلادي:

كانبيراموقع:

185 - 1الصفحات:

:MD 616120رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

Australian National Universityالجامعة:

College of Engineering and Computer Scienceالكلية:

أسترالياالدولة:

Dissertationsقواعد المعلومات:

صناعة البرمجيات ، برامج الحاسبات الالكترونية ، هندسة البرمجيات ، النمذجة ، النظممواضيع:
الخبيرة

https://search.mandumah.com/Record/616120رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/616120


www.manaraa.com

Part

III
Proof of Concept and

Conclusion



www.manaraa.com



www.manaraa.com

Chapter

5
Proof-of-Concept:

Requirements of the Voter

Mark-off System

In general, we look for a new law by the following process. First we guess it.

Then we compute the consequences of the guess to see what would be

implied if this law that we guessed is right.

Richard Feynman

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Design of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Building the DFD . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.2 Assign context states . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5.1 Implications of context states on variation . . . . . . . . . . 99

5.5.2 The DFD review . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6.1 Further implications on influence . . . . . . . . . . . . . . . . 104

5.6.2 Further implications on perception . . . . . . . . . . . . . . . 106

5.6.3 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . 108



www.manaraa.com

Chapter 5: Proof-of-Concept: Requirements of the Voter Mark-off System

5.1 Introduction

In the second part of this thesis (Part II) I presented how to represent context

of individual elements (Chapter 3) and how to model the context of a system of

elements (Chapter 4) when context states are mapped to DFD elements. Here,

I demonstrate how to apply context states to the analysis of requirements as

modelled by DFD, which shows the functional view of the system. The study is

based on the requirements of a Personal Digital Assistant (PDA) based system to

mark voters as being voted on an electoral roll for the Australian ACT and Federal

parliamentary elections.

5.2 Goals

The main aim of this study is to demonstrate the effect of representing context in

terms of states, based on influence and perception, on system decisions in terms of

choice of variation. This is done by the following:

• Show how to assist analysts to identify which elements that are possible to

vary and how, and which elements that are not possible to vary and why.

• Show how to assist analysts by declaring the source of their knowledge about

when variation is possible and when it is not.

From previous two points, the following operational questions are answered by

the results of the study:

1. Do context states help to identify elements that may be varied and other

elements that may not?

2. Do context states identify the basis for possible sources of variation?

By reading the requirements, and applying the context approach, it is possible

to recognise that both questions may not be easily answered by reading the

requirements alone. But after the requirements are mapped using DFD, and the

context is modelled, it is possible to identify how both questions are answered for

each system element described by the requirements.

88



www.manaraa.com

5.3 Setup

5.3 Setup

In 2001 the Australian ACT and Federal parliamentary elections moved from the

manual voting system to the new electronic system eVACS (electronic Voting and

Counting System). But before and after the system was implemented, the process

of marking voters as having voted was done manually. Recently, the development

of a new system to mark voters as being voted electronically has commenced using

two devices: a handheld PDA, and a central PDA (C-PDA). The scenario of use is

as follows: a polling official is approached by a voter whose name is searched using

the PDA until (s)he is identified, and then (s)he is issued with a ballot paper or

directed to an electronic voting system eVACS machine, and marked (in the PDA)

as having voted. The PDA stores electoral roll data remotely on the C-PDA where

it can be viewed later to establish who did not vote and/or who voted more than

once.

The study was conducted by analysing requirement scenarios presented in an

event-action table, consisting of 87 rows/statements and five columns (number,

event, action, conditions, and a requirement code). The table was divide into

three major activities: the scenario of accessing the PDA (14 rows/statements),

the scenario of marking a voter of the electoral roll (37 rows/statements), and

the scenario of data transfer (36 rows/statements). The analysis included two

participants: an analyst, and a member of the development team (collaborator).

The analyst studies the system through the set of requirements provided by the

collaborator, builds the DFD diagram, and assign context states. The results, then,

are discussed with the collaborator comparing actual events that occurred during

and after the development and implementation of the system. Requirements

presented by the collaborator are given in Appendix B.

5.4 Design of Study

The design of the study is divided into two parts: first build the DFD, then assign

context states to its elements. In the first part, the DFD is built by drawing a

context-diagram, which is followed by DFD-0. When the DFD is built, context

states are assigned to DFD elements, mainly process and data flow.

5.4.1 Building the DFD

The analysis that represents requirements in a DFD is built in two stages.

The first stage represents the functional representation of the system without

89



www.manaraa.com

Chapter 5: Proof-of-Concept: Requirements of the Voter Mark-off System

Figure 5.1 – The context-diagram of the voter marking system.

DATA DICTIONARY

Voter Details=FirstName+(Middle

Name)+Surname+Address+DoB

Voter ID=Unique ID *generated by the system

Voted=[‘Yes’|‘No’]

Voter Data=FirstName+(Middle Name)+Surname+(Address)+(DoB)

Feedback=(MiddleName)+(Address)+(DoB)

Request=[‘MiddleName’|‘Address’|‘DoB’]

Instructions=*Verbal directions on what to do with the Ballot

Paper and where to submit vote.

Table 5.1 – DFD data dictionary.

the implementation decisions mentioned in the requirements, identified as ‘the

Voter Mark-off System.’ The second stage shows the system and some of its

implementation decisions that have been made by system developers, identified

as ‘the PDA-based Voter Mark-off System.’ The process of building the DFD, on

both stages, starts from the context-diagram, then represents processes at DFD-0.

90



www.manaraa.com

5.4 Design of Study

First stage: Voter Mark-off System

It is possible to distinguish between the implementation details of the system, as

a result of decisions made by stakeholders and system developers, from the func-

tional description of the system. The DFD model starts with the context-diagram,

which represents the system main process, then decomposes into the DFD-0.

Context-diagram: Figure 5.1 shows the context-diagram of the PDA system,

and Table 5.1 shows the DFD data dictionary. The system consists of the main

process ‘Voter Mark-off System,’ and the external entities (terminators), ‘ACT

Electoral Commission (ACTEC) electoral roll,’ ‘voter,’ and ‘mark-off list’. What

follows describes the functional scenarios of the system from the perspective of

the aforementioned terminators.

• ACTEC electoral roll: before the voting commences, Voter Details are stored

in the system with a generated Unique ID for each Voter and Voted=‘No.’

• Voter: when the voting commences, Voters provide their First Name and

Surname, which are immediately used to search all stored Voter Details

(Electoral Roll). If more than one instance of Voter is found and has not voted

(Voter=‘No’) then ‘Middle Name’ is requested or fed back for confirmation. If

there are still multiple instances of Voter then ‘Address’ is requested or fed

back for confirmation. Same process applies again for ‘DoB’ if there are still

multiple instances. Once voters are identified uniquely they are marked off as

having voted (Voted=‘Yes’) and then given one Ballot Paper with Instructions.

• Mark-off list: at the end of election day, ‘Voter ID’ and Voted for each voter is

produced by the system that may be used later for analysis.

DFD-0 Figure 5.2 shows the processes within the main process in the context-

diagram, which forms the DFD-0. What follows describes each process.

• Import Electoral Roll: receives ‘Voter Details’ from (terminator) ‘ACTEC

electoral roll’ and generates ‘VoterID,’ creates ‘Voted’ and assigns it ‘No,’ then

stores ‘VoterID+VoterDetails+Voted(=‘No’) in ‘Electoral roll for Mark-off.’

• Establish Voter Validity: when ‘Voter Data’ is received, the system checks

for validity. It searches for the details of voter (FirstName+Surname+

(MiddleName)+(Address)+(DoB)) and returns with ‘Feedback’ or ‘Request’ to

the Voter. If the ‘Voter’ is uniquely identified the ‘Voter’ is approved (Voter

91



www.manaraa.com

Chapter 5: Proof-of-Concept: Requirements of the Voter Mark-off System

Figure 5.2 – A DFD-0 of the voter marking off system.

OK). At the end of the election the VoterID and voting status (Voted) is

produced of every Voter in the stored list.

• Issue Ballot Paper & Instructions: when the ‘Voter’ is identified the process

signalled to issue/hand a ‘Ballot Paper’ and voting ‘Instructions’ to the Voter.

Second stage: PDA-based Voter Mark-off System

The second level is the result of two solutions of how the system may mark-off

voters from the electoral roll. First, to use a PDA to search and mark-off voters.

Second, to have a polling official (PO) to operate the PDA. Adding both elements

to the system transforms the DFD-0 and as a result the context-diagram. What

follows shows how the DFD-0 is transformed, then show the resulting context-

diagram.

DFD-0: Two processes are added to the DFD-0 (Figure 5.2), ‘Performing PO

Operations’ and ‘Search for Voter.’ Figure 5.3 shows the transformed DFD and

what follows describes newly added processes.

92



www.manaraa.com

5.4 Design of Study

Figure 5.3 – The DFD-0 after adding ‘Perform PO Operations’ and ‘Search for Voter’

process, to represent the use of PO and PDA by the system.

• Performing PO Operations: communicates with ‘Voter’ through Feedback/Re-

quest and receives ‘Voter Data’ (verbally) from ‘Voter.’ Based on search results

and communication with ‘Voter,’ the process identifies sends ‘Voter OK’ to

issue ‘Ballot Paper’ and ‘Instructions.’

• Search for Voter: receives ‘Voter Data’ in text from ‘Performing PO Opera-

tions,’ then the result is sent back to ‘Performing PO Operations’—displayed

results: FirstName+Surname+ (MiddleName)+(Address)+(DoB).

Context-diagram The context-diagram in Figure 5.4 shows the re-scope of the

system, based on what may be developed as part of the PDA, and what is outside

the PDA.

• Inside PDA: processes that perform operations directly with the data storage

‘Electoral Roll for Mark-off,’ ‘Search for Voter’ and ‘Import Electoral Roll,’ are

kept within the boundaries of the PDA, that is the main process ‘Verify Voter.’

93



www.manaraa.com

Chapter 5: Proof-of-Concept: Requirements of the Voter Mark-off System

Figure 5.4 – The context-diagram after the re-scope of the Voter Mark-off system.

• Outside PDA: ‘Perform PO Operations’ and ‘Issue Ballot Paper & Instructions’

are performed manually with the assistance of the PO. The PO interacts with

the ‘Voter’ to transform ‘Voter Data’ from being verbal to non-verbal. ‘Ballot

Paper’ and ‘Instructions’ are provided to ‘Voter’ by PO after his/her details are

verified.

5.4.2 Assign context states

The context states within the system of marking off voters may be assigned to

three levels. The first level has a single context state that applies to the system

as a whole. The second level shows context states of processes and terminators

without data flow—refer to Section 4.3.4 for details. The third level shows the

context states assigned to process/terminators and data flow.

The assignment of context states starts from the view of the system depicted

in the original context-diagram (Figure 5.1) and re-scoped context-diagram (Fig-

ure 5.4). As mentioned in Chapter 4, the default context state of DFDs is function

based on semantics (Func:S), thereby allowing to focus on states that deviate from

the default context state. To avoid presenting and analysing redundant context

states, three representative context states are presented in what follows. The

order of assigning/identifying context states follows the order of presenting the

DFD diagram. The full list of identified context states are listed in Appendix A.

94



www.manaraa.com

5.4 Design of Study

Figure 5.5 – The context-diagram showing only process and terminators. Context

states are assigned to the connection between the main process and terminators.

Context-diagram (Figure 5.1)

The context state of context-diagram may be assigned at three levels. The first level

represents the context state of the system as a whole. It is typically represented

by one context state. The second level represents the context state of terminators

and process without data flow. It assumes the context of the elements of the DFD

before adding data flow. The third level are context states between data flow and

process or terminators. Only the third level may be assigned to the DFD model, as

Figure 5.6 shows. For the second level, data flow are removed, and elements of the

diagram are connected and assigned states, as Figure 5.5 shows. The context state

at the first level is not represented by DFD, but described.

• Context state of the diagram as a whole: the system to mark-off voters is part

of the larger election system. Before introducing the PDA system, marking

voters from the electoral roll was performed manually. The assumption is

that the new system preserved the structure, the procedures, and the goals of

the old system. Because the system new system preserves the old system,

the new system as a whole becomes under the influence of culture. But

because the fact that the system has preserved the structure of the old system

is an assumption, not confirmed by any requirement, the cultural influence

becomes baed on judgement. As a result, the context state of the system as a

whole is culture based judgement1 (C:J).

1The perception of judgement here, and in other context states, is my own judgement, as the

analyst of the system. In other use of judgement, outside of this study, it may indicate the judgement

of a single analyst or a team of analysts.

95



www.manaraa.com

Chapter 5: Proof-of-Concept: Requirements of the Voter Mark-off System

Figure 5.6 – The context-diagram showing the context state of ‘Voter Data’ and ‘Voter

Mark-off System’.

• Voter–Voter Mark-off System: Figure 5.5 shows the context of both ‘Voter’ and

‘Voter Mark-off System.’ Voters are under the influence of ‘Voter Mark-off

System’ when they interact with it. The interaction includes providing

personal information, and responding to requests and feedback from the

system. The interaction is part of the culture of the system as a whole, which

demands from each voter to provide this information. As a result, ‘Voter’

becomes influenced by culture, and because the ACT Electoral Commission

defines what should be obtained from voters as part of a predefined procedure

(laws/values), culture becomes based on values (C:V).

But the influence that ‘Voter’ applies on the system does not relate to the

culture of the system. It relates more to the goal of the voter from interacting

with it. Voters require primarily from the system to provide functionality.

Accordingly, ‘Voter’ places an influence of function. The influence is derived

from the description of requirements, that indicates that voters use the

system to be issued a ballot paper to vote. Thus the influence of function

becomes based on semantics (Func:S).

• Voter Data–Voter Mark-off System: ‘Voter Mark-off System’ places an influ-

ence of fit based on theory (Fit:T) on ‘Voter Data,’ because ‘Voter Data’ must

match the stored data in the system before a ‘Voter’ is marked off. The search

96



www.manaraa.com

5.4 Design of Study

Figure 5.7 – Validating Voter before (above) and after (below) adding PO and PDA.

described by more than one statement in the requirements form a theory

of how the system operates, which supports that ‘Voter Data’ is under an

influence of fit. On the other hand, ‘Voter Data’ places a force of function

based on semantics (Func:S) on the system. What the data demands from the

system, at this stage at least, is to provide the needed functionality to process

the data as described by requirements.

DFD-0 (Figure 5.2,5.3)

The context states of the DFD-0 changed from Figure 5.2 to Figure 5.3 after adding

PO and PDA. What follows identifies the context state before introducing PO and

PDA and after.

• Before: ‘Establish Voter Validity’ (EVV) and VD: EVV places an influence of

97



www.manaraa.com

Chapter 5: Proof-of-Concept: Requirements of the Voter Mark-off System

Figure 5.8 – The context states assigned to the re-scoped context-diagram.

fit based on theory (Fit:T) on VD—this states is also shown at the context-

diagram. EVV places fit on VD because it must match the stored data.

• After: ‘Perform PO Operations’ (PPO) and VD: When PPO is added to receive

VD, the context state of VD becomes function based on semantics (Func:S).

The force of fit is moved to be placed by ‘Search for Voter’(SV) on VD.

Figure 5.7 shows the change. PPO according to requirements does not match

the VD itself. It uses VD to search for it using ‘Search for Voter’ (SV). PPO,

then, demands from VD to be functional for it to be searched using SV.

• After: VD and SV: the influence placed by VD on SV is taste-and-passion

based on judgement (T&P:J). VD demands for better performance when SV

performs its search. It may also reflect the demands by PPO. Representing

the context state of the connection between PPO and SV, PPO places an

influence of taste-and-passion based on judgement as well. The influence that

SV applies is fit based on theory on VD. It is the same influence that EVV

placed before introducing PO and PDA.

Context-diagram (Figure 5.4)

Figure 5.8 shows the context state of ‘Voter Data’ in the re-scoped context-diagram.

It shows the same context states assigned to ‘Search for Voter’ at DFD-0. The

influence placed by ‘Perform PO Operations’ on ‘Search for Voter’ is moved at the

98



www.manaraa.com

5.5 Analysis

context-diagram level to represent the context of PO and ‘Verify Voter,’ which is

taste-and-passion based on judgement.

But if the context of using the ‘Verify Voter’ (PDA) to search for ‘Voter Data’ is

represented through a direct connection with PO, without the data flow, a different

context state is obtained. ‘Verify Voter’ applies a force of taste-and-passion on PO

based on semantics, because it allows the PO to search the system using more than

one element, ‘First Name,’ ‘Address,’ ‘DoB,’ and so on. Similarly, PO may search for

‘Voter’ without using the system, by going back to the manual electoral roll. But

the use of PDA is preferred over the manual system. Accordingly, the influence of

taste-and-passion is applied on ‘Verify Voter’ based on judgement by PO.

5.5 Analysis

Results are analysed in two parts. First, the implications of context states on

system variation are presented. Then further implications obtained after sharing

the results with the collaborator are presented.

5.5.1 Implications of context states on variation

The analysis attempts to answer two of the previously posed questions. First,

‘Do context states, when assigned to DFDs, help to identify elements that may

be varied and other elements that may not?’ Second, ‘Do context states identify the

basis for possible sources of variation?’

Question 1: Do context states help to identify elements that may be varied

and other elements that may not?

Context states implied how the system may vary through the influence model’s four

forces (fit, function, taste-and-passion, and culture). The analysis identifies also,

when applicable, the role of interrelations between the four forces on variation.

Influences are identified on three levels, the level of the system as a whole, the

context of processes without data flow, and the context of data flow and process.

The context-diagram that Figure 5.1 shows describes how the system functions

before introducing the PDA as a solution. The first context state identified is

assigned to the context of the act of marking off voters. It forms the contextual

underpinning of the system. Because the manual system has been used as part of

the election process, it became part of the culture of an existing system. Thus the

system, as a whole, the need for it, how it functions, and the success or the failure of

99



www.manaraa.com

Chapter 5: Proof-of-Concept: Requirements of the Voter Mark-off System

the new system; may all be developed and evaluated under the influence of culture.

But because it is under the influence of culture, it is possible to vary the system, as

long as the change will introduce improvements over the old system. The force of

culture forms the first implication on the opportunity to vary the system.

Within the influence of culture there exists the connection between ‘Voter’ and

‘Voter Mark-off System,’ the latter being the main process within the context-

diagram. Because the manual system is a ‘legacy system,’ what it demands from

‘Voter’ is also part of that culture. Accordingly, when a voter follows the procedures

enforced by the system, on how to be marked as having voted and how to obtain a

ballot paper, following these procedures and satisfying its demands; is a response

to the influence of culture. But the demands of ‘Voter’ are functional. That is,

when voters arrive to receive their ballot papers to vote, they may generally expect

functionality from the system. If this was not true, it may not be possible to change

how voters are served by the system. ‘Voter’ then applies a force of function on the

system as a result.

‘Voter Data’ comes under the context of the connection (culture/function)

between ‘Voter’ and ‘Voter Mark-off System.’ It forms a context connection with

the main process when ‘Voter’ provides his/her details. When ‘Voter’ sends data

to ‘Voter Mark-off,’ ‘Voter Data’ becomes under a force of fit by ‘Voter Mark-off,’

because it must match the data stored by the system. But similar to ‘Voter,’ ‘Voter

Data’ expects functionality from the main process. The functionality it demands is

the functionality that the system offers.

The three context layers together, the context of the system as a whole, the

context of processes and processes/terminators, and the context of data flow and

process/terminators; may explain the source of variability introduced later. Each

context state unfolds to reveal the context within it. In the example of the context

states assigned to the context-diagram, the implication of variability may be

identified by analysing the three context states together. Because the whole system

is influenced by culture, the influence indicates that the system may allow change

to the previous system when the new system is developed. Indeed, introducing

improvements to the system is possible, because stakeholders may have saw the

opportunity for change. But because the system is also under an influence of

culture, the system may preserve its structure first, as shown by the first depicted

DFD, then introduce variation from within. On the level of ‘Voter,’ for example,

it is possible to vary how to mark-off voters from the electoral roll, because they

only require functionality from the system—they place an influence of function.

This is also true on the level of voter’s data (see Figure 5.1), yet another source of

variation. Because ‘Voter Data’ places an influence of function on the system, it is

possible to replace the system with one or more solutions that provide similar or

100



www.manaraa.com

5.5 Analysis

enhanced functionality. This was shown by the steps that followed that introduced

PO and PDA.

PO was introduced first as a process in Figure 5.3, represented as ‘Perform

PO Operations.’ Together with ‘Search for Voter,’ it replaced the process ‘Establish

Voter Validity,’ shown by Figure 5.2. Figure 5.7 shows the context states before and

after ‘Establish Voter Validity’ was replaced. In both DFDs, ‘Voter Data’ showed

an influence of function, which allows ‘Establish Voter Validity’ to vary as long it

performs the required functionality. When PO and PDA were added, the required

functionality was divided between PO and PDA. The former communicates with

the voter and operates the PDA, and the latter searches for voter’s data.

But the opportunity to vary how to mark-off voters was not only indicated by

the context of ‘Voter Data,’ it was also indicated at a higher level, according to the

influence of ‘Voter.’ As previously discussed, the influence of ‘Voter’ is function,

which allows the system to vary how to provide voters with the service that they

require. It may imply varying what type of data to search for in the system, or

imply that voters may not provide any data at all, if the culture that influences the

system as a whole allows it.

Yet, while context states have implied where the system may vary, they also

show where the system may not. Within the overall influence of culture, the system

has continuously applied an influence of fit on the data searched by the system.

The same influence did not change even when the PDA was introduced. ‘Establish

Voter Validity’ placed an influence of fit on ‘Voter Data,’ and when ‘Perform PO

Operations’ and ‘Search for Voter’ were introduced, ‘Search for Voter’ placed the

same influence on ‘Voter Data.’ When the system was re-scoped, the influence of

fit appeared to be applied by the main process on ‘Voter Data.’ If the influence of

fit to be varied, the change must come from the influence of culture. In fact, when

the context state of the connection between PO and ‘Verify Voter’ is assigned at the

context-diagram level, the PO does not have to use the system if he/she chooses to.

As a result, the influence on PO is taste-and-passion. But for the data, even if the

system is changed, it must fit the stored data, whether on the manual record or the

PDA database.

There are two main influences within the overall influence of culture placed on

the system as a whole. The first is the influence of function placed by ‘Voter’ on the

system. The second is the influence of fit placed by the system on ‘Voter Data.’ The

function influence has allowed the system to vary how it provides service to voters,

by using the manual system, and later by using both PO and PDA. The fit influence

placed by the system on ‘Voter Data’ remained, as shown on different DFD levels,

even when the way to enforce the fit has changed. Both influences, however, may

101



www.manaraa.com

Chapter 5: Proof-of-Concept: Requirements of the Voter Mark-off System

be transformed if the culture of the system itself changes, such as not searching for

voter data.

Question 2: Do context states identify the basis for possible sources of

variation?

Context states have identified how each influence was perceived through four

sources of knowledge: judgement, semantics, theory, and values. With each source,

it is possible to imply how reliable the assessment of the system’s context is.

Influences were identified under judgement when they were not mentioned

in the requirements. For example, the context state of the overall system was

identified as culture based on judgement. But because the requirements did

not mention anything on the background of the system, which may answer the

question whether the functionality is derived from actual processes applied in

reality or not. It was assumed that the processes described in the requirements

were the actual processes applied by the manual system before the requirements

were developed. Similarly, the influence applied by ‘Perform PO Operations,’

taste-and-passion on ‘Search for Voter’ is based on judgement because the influence

was not mentioned in the requirements. But the search for voter’s data may

indicate that the process, if not measured carefully, would take a long time to

return results. Accordingly, it is expected that the time it takes for the process

to return results may be determined according to the preference of the operator

within ‘Perform PO Operations.’ As in the case of the influence of culture,

taste-and-passion may not be correctly identified if the judgement is misguided.

Nonetheless, it may alert designers who may implement the system to consider

performance when ‘Voter Data’ is searched for in the PDA.

Contrary to judgement, influences based on semantics are identified directly

from requirements. Because the system description in the DFDs are derived

mainly from requirements, most of the influences were perceived under semantics.

For example, the influence placed by ‘Voter Data’ in the main process on the

context-diagram, is function based on semantics. The process of entering the data

was described within the requirements to indicate the functionality performed by

the PO, and have not indicated any other influence. Statements may not indicate

other influences, but they also do not limit what might be derived from them. For

example, the statement that describes the functionality of the use of ‘Voter Data’ is

described by requirements to indicate an influence of function. But it may be used

as a reference for an implementation that applies an influence of culture. If the

‘Voter Data’ is described by the data dictionary to have non-standard characters

that are culturally related, the influence may still be based on semantics, but the

102



www.manaraa.com

5.5 Analysis

influence may become culture not function.

A higher perception level than judgement and semantics is identified through

theory and values. Theory is identified for the search of ‘Voter Data’ for when the

influence of fit based on theory applied by ‘Search for Voter.’ The theory is assigned

based on two sources, first, the external source that describes the technology for

searching the data. The second source is the internal statements that describe

the same influence in more than one place in the requirements. Both sources

support the use of theory as a basis for perceiving the influence of fit. Searching

for the voter’s data is part of the goal of developing the system. It appears when

officials search for names manually, and when it is described by the specification

of PDA search. Compared to theory, values are manifested in laws or regulations

that govern the election process. The only influence based on values appears in

the influence placed by ‘Voter Mark-off System’ on ‘Voter.’ The demands from the

system on voters, in this case, to fit their data to the stored data in the system,

is based on laws and procedures set by the ACT Electoral Commission. The

description of the law, which may include constraints and restrictions, may specify

what data may be used, and what data may not be.

The only perception level that was not identified in the system, is truth-reality.

Typically, in order for elements to be perceived under truth-reality they have to be

implemented. But because the described system is not developed yet, truth-reality

does not apply to this level of analysis.

5.5.2 The DFD review

When assigned context states were presented to a member of the team who

developed the original system (collaborator), he confirmed what the context states

implied in terms of where the system may vary. But he also offered new

interpretations of the implications of the context states that were not originally

foreseen. The collaborator have confirmed that fit placed by the use of search for

the ‘Voter Data,’ proved to be significant to the success of the system. Furthermore,

the collaborator’s comments have indicated that context states may also serve as a

tool to identify possible misfits.

The development team, at the day of election, had trouble finding few names

when they searched the system. There were several reasons behind this, as the

collaborator explained, the most relevant to the development of the system was

that some names had non-standard characters that could not be searched. As a

result, voters had to be marked as having voted using the manual system. This

was reflected by the context states on the DFD in the force of fit placed by ‘Search

for Voter’ on ‘Voter Data.’ It implied that if the name does not fit the characters

103



www.manaraa.com

Chapter 5: Proof-of-Concept: Requirements of the Voter Mark-off System

stored or used by the PDA, or if the name does not fit the list stored in the system,

the search will fail.

The review has indicated that context states may be used to identify possible

sources of misfit. Because the DFD shows the context of the system through

requirements, different levels of influence reflect different misfit levels as well.

Thus when the context states identify a force of fit, it indicates that a misfit may

be severe and may lead the system to fail its task. As a result, context states

may guide developers to concentrate on how to prevent misfits that occur within

the context of a force of fit from occurring, such as failing to search for a name in

the PDA. But misfits that occur within a taste-and-passion context are less severe,

because in concept, it is possible to use a less preferred choice instead, and avoid

system failure. Accordingly, in the case of a taste-and-passion, the system may

plan to alternate between ways to achieve its goal, but in the case of fit, it makes

an effort to ensure that the system does not fail.

5.6 Discussion of results

Further discussion of the results of the study is presented. It includes a discussion

of further implications of context states, first, on the influence dimension, second,

on the perception dimension. The first provides further discussion on the impli-

cations on the use of context states as a tool to identify/classify system misfits.

The second discusses issues with the perception of influences. It explores possible

reasons why context states may not be assigned correctly, and how analysts may

improve their assessment of context states. The last part presents discussion of

possible threats to validity.

5.6.1 Further implications on influence

As indicated by the discussion with the collaborator is the implication of influences

on the process of identifying system misfits. When identified, influences form

a context of misfits within DFDs. DFDs typically intend to represent what the

system should do, but using influences it is possible to identify what the system

should not do, and prioritise them. Three misfit examples identified by the study

illustrate how influences serve as useful indicators of system misfits. The first

misfit identified is associated with the influence of fit placed by search on ‘Voter

Data.’ The second misfit is identified by the influence of taste-and-passion placed

by ‘Voter Data’ on the system manifested in the main process ‘Verify Voter.’ The

third misfit is battery failure, which has not been represented by the DFDs of the

104



www.manaraa.com

5.6 Discussion of results

study. What follows describes each misfit.

• Fit on ‘Voter Data’: a misfit occurs when the voter’s details are entered by

the PO and the system returns ‘no match found’ even though the details

are in the system. Note that this misfit is more severe than other misfits

because it occurs within the context/influence of fit. The PO has no way to

know whether the person is suppose to be in the system but he/she is not, or

if the voter is actually stored in the system but the search cannot find him/her

because of a fault. When this misfit is reviewed with the collaborator it was

possible to recognise that three tactics were applied to prevent it. First, POs

are given five data fields: first name, middle name, last name, data of birth,

and address. Searching with any of the five elements should help to reduce

the chances that a mistake in one or more than one data element may prevent

the voter from being found. Second, POs are able to obtain search results as

they type first letters, instead of waiting for the name to be typed fully until

the system starts its search. This tactic enables the PO to speed the process of

finding the voter’s data, and reduce the chances that the search result return

‘no match’ because one letter is stored incorrectly. Third, the manual system

is preserved as an alternative choice to register voters if the system fails. In

few cases where the voter is not found in the manual system, he/she would be

asked to declare their identity and sign a declaration that they have voted.

• Taste-and-passion on ‘Verify Voter’: ‘Voter Data’ demands from ‘Verify Voter’

to return search results in a preferred speed. Not being able to meet the

preferred speed is a misfit. While it is less severe than other misfits,

such as not finding stored data, but it represents a failure to introduce an

advantage of using the PDA over the manual system. The way to improve the

performance of the system is to limit the fields that the PO may search for.

Another way is to allow partial name search. Results may be obtained with

the first letters of the voter’s name without searching for the whole name.

• Fit on battery: the battery must fit the time of service that POs need to use

the system. If the battery fails, because its power is exhausted or it reaches

end-of-life, the system will stop providing service. If this loss of service is not

handled properly, by introducing an alternative device to continue providing

the service, the system may result in a misfit. To address this issue, the

PO may recharge an lose mobility to recharge the device when attached to a

power-cord. The PO may also be informed when the device is running on low

power to avoid the misfit of the sudden loss of service while the verification

process is undergoing.

105



www.manaraa.com

Chapter 5: Proof-of-Concept: Requirements of the Voter Mark-off System

Identifying misfits in early stages of system development using context states

enables analysts to plan for counter measures. Counter measures targeting a

specific misfits is equivalent to what Alexander [2001] has identified as the process

of strengthening centres. When search becomes identified as a centre, for example,

one way to think of its strength, is its ability to avoid misfits. Maintaing context

states as focal points may drive the system to achieve targeted quality attributes

by measures to avoid misfits under different contexts.

5.6.2 Further implications on perception

Perception level may imply the degree of reliability that an influence has been

identified correctly or not. The use of knowledge levels, such as judgement, is to

allow analysts to share their confidence or doubt about certain levels of influence

they have identified. It may allow analysts to identify clearly that some of the

influences identified are assumptions not facts. The study of the PDA system

shows several context states that may serve as examples where assumptions were

declared, and can be easily challenged.

Consider the example of the assumption that the system of marking voters as

a whole is under the influence of culture. For example, it is possible argue that

the system as a whole is under the influence of function, because it supports the

goal of maintaining the integrity of the whole election process. In fact, this may be

actually true. The choice to account for voters may have function as its early source

of utility. Furthermore, function would be the common influence of other systems

that mark voters in a similar way. But to argue for culture, the way systems that

share the same functional influence vary, is to adapt to the specific way that this

process is executed. This specific way becomes influenced by culture. But because

both arguments are logical arguments, they are based on judgement, not evidence

from requirements (semantics) or theory. The role of the analyst as a result is to

improve the chances of the his/her argument by gathering more information.

When an analyst declares that an influence is based under a certain level of

perception, it is expected that necessary effort is made to transfer lower perception

levels to higher levels whenever possible. Consider the perception of judgement,

which assumes no source of knowledge that it identifies except intuition and

experience. But in order to formalise this judgement it either should be translated

into a requirement or identify an existing requirement that supports it. The

move from a perception of judgement to semantics in the form of requirements, for

instance, should go through a process that verifies whether the perceived influence

applies to the current system or not. If not, then the influence is totally dismissed,

or reverted to its original functional influence.

106



www.manaraa.com

5.6 Discussion of results

The process of identifying context states could always be challenged even if the

level of perception is high. If an influence is identified under theory, for example,

the choice of theory may be challenged as well. Especially if more than one theory

could be chosen. But act of declaring that the perception is at the level of theory, in

its simplest form, means that the influence has further elaboration that is worth

considering. The influence of fit placed on ‘Voter Data’ is based on theory because it

is one of the core influences within the system that is referred to widely in the

requirements. To argue against this influence based on how it was perceived,

means that the links between the concept of search and the statements that form

the theory must be broken. Within this deconstruction process lies the role of

analysis.

5.6.3 Threats to validity

Areas of possible validity threats to the study is identified here. This includes the

internal validity, the construct validity, and the external validity.

Internal validity: are the observed findings attributed to the presented

approach or to other possible causes? Four factors are maintained to support

the study’s internal validity:

1. Because the system is already implemented and operational, the study did

not influence the results of the project. For example, no results from the study

influence the system’s requirements either by adding/removing statements or

offering new interpretations to existing statements.

2. To ensure the findings were not obtained as a result of a mature under-

standing of the requirements, the study was only conducted once. Any new

information obtained after the study was completed, was not used to alter or

improve the results. 2

3. The only source of information about the system was the requirements

document. No other sources were used during the study.

4. The results of the study conquer with the questions and issues faced during

development. For example, after the context states were identified, a member

2This is true in regards to the process of reading the requirements and identifying context states.

But the map was first built using two levels of representation, and was first published in Alshaikh

and Boughton [2009]. When the approach developed further—following suggestions to simplify

the approach—the approach was reduced to represent context using DFD. Accordingly, when the

previous approach was replaced by the new one, the original interpretation was maintained.

107



www.manaraa.com

Chapter 5: Proof-of-Concept: Requirements of the Voter Mark-off System

of development team, was asked about some of the issues raised by the

analysis. The issue with the search of names was a concern shared by the

team when the system was development, which was predicated by the context

states.

Construct validity: did the study effectively identify variation oppor-

tunities? To maintain construct validity to address the threat of researcher’s

expectancy no contact with the stakeholders or system developers during the

study was established. This contributes to the validity of the study as it reduces

the chance that the findings were a result of prior knowledge of the system.

Furthermore, the analyst has no knowledge of similar systems leading to similar

results.

External Validity: could the outcomes of the study be generalised to other

cases? While this was a single study, some of the results are generalizable and

comparable with other systems because some context states and their associated

elements are not limited to mobile-based systems. For example, the context states

associated with ‘password’ and ‘search name’ may be represented with the same

states for other systems.

5.7 Summary and conclusion

The study demonstrated how the context approach could be applied to enrich

the DFD representation of requirements. The study, first, constructed a DFD

diagram that describes the functional view of the system, starting from the

context-diagram, followed by DFD-0. After the DFDs were constructed, context

states were assigned to the diagram.

Context states have implied how the system may vary within the limits and

opportunities offered by its context. The use of the approach encourages the

analyst to ask questions. The use of context states, also enables the analyst

to reveal uncertainties about the meaning and implication of some requirement

statements, in the attempt to reach to an acceptable level of clarity about the sys-

tem’s context. Context states have also identified significant design considerations,

having implications on system specifications and quality attribute concerns such

as performance.

When the results were reviewed by a collaborating system developer, the

developer indicated that context states may also indicate system fits and misfits.

108



www.manaraa.com

5.7 Summary and conclusion

Context states have predicted some of the challenges that system developers faced

when the system was implemented. As a result, misfits and fits may be prioritised

according to influence. Fit implies limited variation, which may lead to more severe

consequences than a misfit under the influence of taste-and-passion. This new

interpretation of what context states imply, may be the source of further studies on

the use of the context approach to identify possible sources of system failure.

Design implications derived from the context states motivates the study to be

extended to follow the same process to represent elements with architectural and

usability significance. Context states, as the study suggests, represent a useful

artefact to represent elements within requirements, and extended them beyond

the scope of requirements, to approach various system concerns.

109



www.manaraa.com



www.manaraa.com

Chapter

6
Summary and Conclusions

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Summary of contribution . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Limitations of contribution . . . . . . . . . . . . . . . . . . . . . 119

6.5 Overall conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 Recommendations for future work . . . . . . . . . . . . . . . . . 122

6.6.1 Industrial-scale evaluation . . . . . . . . . . . . . . . . . . . 122

6.6.2 Provide additional examples . . . . . . . . . . . . . . . . . . . 123

6.6.3 Reduce the complexity of contextual analysis . . . . . . . . . 123

6.6.4 Tool support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6.5 Expand DFD to a more general representation . . . . . . . . 125

6.6.6 Context state transition scenarios . . . . . . . . . . . . . . . 126

6.7 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



www.manaraa.com

Chapter 6: Summary and Conclusions

6.1 Introduction

The aim of this thesis is ‘to present a model of context that shows when to vary and

when not to vary a system. Such a model should indicate the opportunity to vary the

system when the context reflects soft demands, and indicate when it is not possible

to vary the system because the context has strict demands. The model should also

indicate when strict demands are based on conjecture, and when soft demands are

based on strong evidence. The model should show different degrees of variation that

the system may have through context.’ The thesis aim has been achieved through

the model of influence and perception using the CDM, and the mapping of context

using DFDs.

I present a summary of what is presented by the thesis on how to indicate

implications of variability from context. The summary begins with a review of

related work, then present the summary of contribution, followed by limitation of

approach, then recommendations for future work.

6.2 Related work

As the main contribution of the research of this thesis, I provide a survey of work

related to context states. The survey shows how various techniques have been

used that are similar to what is used to analyse context, but either lack generality

or have a different focus.

There are several approaches that identify system elements in terms of states

from various software system concerns, such as: software architecture, product

line engineering, and software metrics. For example, in software metrics, the

Goal/Question/Metric approach (GQM) by Basili et al. [1994], measures how goals

are achieved through view points. View points have two states, they are either

objective or subjective. Similarly, in software architecture, utility trees [Kazman

et al. 2000] scale quality attributes according to three levels: high, medium, and

low. What makes these examples—and similar ones—different from context states,

for one, is how analysts classify the system elements over time. At one time,

what analysts who use GQM regard as subjective, may become objective at another

time. But most approaches that classify system elements in the same way, rarely

explore the dimension of time. As systems develop, they move from one stage

of development to the other, as system developers aim to produce a system that

functions as required. But if analysts consider, at every stage of development, how

they classify elements and change their classification before the system moves to

another development stage, they will start to observe what is recognised, here, as

112



www.manaraa.com

6.2 Related work

context states.

Utility tree: Kazman et al. [2000] present an approach to classify quality at-

tributes according to stakeholders concerns along two dimensions: the importance

of a quality attribute to the success of the system, and the perceived risk associated

with achieving each quality target—the assessment by the architecture team

of how easy to achieve the target quality. Both dimensions are scaled using

three levels: high, medium, and low. The utility tree starts from a single node,

representing the utility of the whole system, then the system utility is divided

according to identified system quality attributes. Quality attributes—recognised

also as quality factors—are divided further into sub-factors. For example, security

is broken down into ‘data confidentiality’ and ‘data integrity’. Each sub-factor then

is assigned an attribute characterisation. Each attribute characterisation provides

a concert of generalised goals. For example, stakeholders may state ‘customer

details security is highly important,’ after refinement, this statement is made more

specific ‘customer details are secure 95% of time’. Each attribute characterisation

is scaled according to the two dimensions: importance of achieving the quality and

the perceived risk of not achieving it.

The two dimensions used to scale attributes, while simpler, are complimentary

to the context states presented here from two perspectives. First, Kazman et al.’s

utility tree involves the perceived risk of the architect team as a second dimension.

This is similar to the knowledge model of perception presented in Chapter 3.

Architects have to predict how to achieve the target quality goals and assess their

prediction to be shared and documented as part of the system. This prediction is

also scaled on the degree of risk associated with the architect’s prediction. But

unlike the knowledge model, architects do not associate or identify any particular

perception source to support their prediction. Basically what the utility tree

identifies is the architects’ judgements, equivalent to judgement in the knowledge

model. While it is likely that architects would base predictions on pure judgement

as a first attempt; judgement is likely to change and become more solid overtime.

This change is not captured by the utility tree.

Second, the utility tree represents the level of importance of the target quality

as prioritised by stakeholders. This is complementary to the force model of

influence (Chapter 3). Stakeholders have to assess the level of importance of a

certain quality relative to the success of the system. Compared to the force model,

the highest ranked quality attribute by stakeholders does not necessarily mean

that the system will fail if not achieved. This is because the consequence of not

achieving a particular quality is not explicit. For example, in terms of priority

relative to stakeholders, the performance of a an online system selling household

113



www.manaraa.com

Chapter 6: Summary and Conclusions

merchandise might be the same as the performance of an airport control system,

both may have high priority. But in terms of consequence, the consequence of not

achieving performance in the online system may be fundamentally different from

the performance of the airport control system. The difference is typically realised

by the architects’ perception of the context, identified earlier as the common-sense

approach. Using the force model, architects and stakeholders become more aware

of the consequence when communicating using fit and function, for example, rather

than high and low.

Feature modelling: feature models are extended from domain analysis by

Kang et al. [1990] to be later used to represent variability for products as part

of product line engineering [Kang et al. 2002]. A feature is an abstraction of

characteristics that share variability and commonalities across products. A feature

model represents three types: mandatory, optional, and alternative features.

Features may be composed by a number of other features, as sub-features or as

an implementation. When features are related, they form a tree structure, the

root represents more general features and the leafs represent the more specific

local features. Kang et al. [2002] also classify features according to functional

and non-functional features illustrated by different features of a house: a flood

control feature is a functional feature, and non-functional features are exemplified

in characteristics such as cost, capacity, usage, and so on. When features are

identified they can be prepackaged as standard items (for later negotiation), and

features that are part of a specific custom-made product.

Fey et al. [2002] notes four limitations of feature models: a) the model does

not explicitly define feature attributes and how each attribute relates to other

attributes; b) the set of relations used to describe features and products are

not sufficient for more complex examples—thus deriving new relations such as

pseudo-features and provided-by relations; c) the feature hierarchy structure has

redundancies that result in inefficient analysis algorithms; d) some inter-feature

relations increase the depth of the tree structure of the model that could be

reduced. Fey et al. suggest that mandatory and optional are reduced to only require

relation.

Fey et al. [2002] suggest feature models may be improved by using meta-models

instead. The defined meta-model introduces new relations: modify, require,

and conflict. A similar extension of feature relations is suggested by Ferber

et al. [2002] by identifying other feature interactions: intentional interaction,

resource-usage, environment induced interaction, usage dependency, and excluded

dependency. Lee and Kang [2004] extend feature modelling by recognising feature

dependancies. Such dependencies are recognised during operations, such as

114



www.manaraa.com

6.2 Related work

when a feature is used or modified, or when a feature is activated—activation

dependancies include exclusion-activation and subordinate-activation.

Yu et al. [2008] indicate that features hide stakeholder intentions. For

example, it is not possible to know why a particular feature is in the model. This

led number of attempts to link feature models to use cases [Griss et al. 1998,

Halmans and Pohl 2003], and mapping features to UML activity and class models

[Czarnecki and Antkiewicz 2005]. Classen et al. [2007] criticise feature models for

mixing between requirements, domain properties, and specifications. Therefore,

Classen et al. [2008] introduces features related to the problem domain—in terms

of requirements, domain properties, and specifications.

The main difference between the context approach proposed here and feature

modelling is that variations in feature modelling do not represent their sources.

Accordingly, based on the relation represented in a feature tree—optional or

require and so on—it is not possible to predict the nature of change from its

source, for example is it personal or cultural. Even when features are mapped

to goals or models, features remain isolated from the real world—as Classen et al.

[2007] indicates by linking features to the problem frame approach [Jackson 2001].

Feature model does not identify consequences of variability. What happens for

example if a mandatory relation is broken or changed, and how to represent

elements that are not realised yet?

For example, Deelstra et al. [2004] report on two core issues drawn from their

experience with product families; the first is complexity, the second is implicit

properties. Complexity arises from the unimaginable number of possible variations

that individuals have to select from. Implicit properties, on the other hand, are

unrealised or/and undocumented dependancy points. Therefore, the advantage

of recording the source of variation—as realised in the context framework by

function, taste-and-passion, and culture—is that analysts do not have to cope

with such complexity, as there are more variants than an analyst or a model can

list. Analysts, and stakeholders as well, need only to know when they are able

to vary, especially in wide variation cases. Implicitness as I argue here, is an

unrealised element of the system, that needs to be noted as part of the context

of the system. As Deelstra et al. indicate, not identifying implicit properties result

in false positives and a larger number of human errors. These implicit properties

of a system are not captured by the model. Deelstra et al. also points to the issue

of consequence. Software engineers when considering variation choices, do not

know all of the consequences during a derivation process. As a result, selection

consequences either appear early, or prove to complicate development later.

115



www.manaraa.com

Chapter 6: Summary and Conclusions

Goal/Question/Metric Approach (GQM): in Basili et al. [1994], goals are

linked to specific measurement techniques through questions. Thus, to verify

achieved goals, it is important to know in advance how to measure them. A

goal is divided into four elements: purpose, issue, object, and viewpoint. The

purpose could be to improve the performance (issue) of data transfer (object)

according to customer satisfaction (viewpoint). The question could be ‘did the

performance improve?’. According to the viewpoint—customer satisfaction—the

metric is assigned ‘increasing performance by 30%’.

The context approach complements the notion of measurable goals, but differs,

in two ways. First, context states recognise the use of measurement through

fit of the force model—that is, measurable elements recognised in GQM as

objective data. Context states differ as it recognises the consequence of failure as

another aspect. Both consequence and measurability come hand-in-hand. Second,

questions in GQM form a technique to link goals to measurements. The influence

of fit, for example, serves a similar role. But context states extend questions

about goal measurements, to measuring perception as well. The perception model

enables analysts to consider the depth of knowledge about a certain influence.

It is not enough to identify a goal, verifying the basis of identification is equally

important.

On explicitness: the need for explicit information/assumption/rational is not

new. Garlan et al. [1995] on architecture mismatch recommend to make architec-

ture (implicit) assumptions explicit. But such implicit assumptions are (typically)

not integrated within system models. Lago and van Vliet [2005] recognise the

need to document and manage assumptions to cater for unanticipated changes in

the environment. Assumptions according to Lago and van Vliet are invariabilities

that are unrealised and unaccounted for, which include: technical, organisational,

managerial assumptions. These assumptions are the state of affairs that a

component operates in, that is its context. But Lago and van Vliet recognise when

the assumptions change, new conditions (context) become relevant. But when new

conditions arise, even if they are not realised, they are recognised as assumptions,

albeit implicit. Therefore, assumptions are either realised facts about the context

as explicit and unrealised facts about the context as implicit. But this model fails

to distinguish between what is realised as true assumptions but not true anymore,

and unrealised assumptions thought to be false but actually true. Furthermore,

the model does not capture and distinguish relevant facts from irrelevant facts.

Ven et al. [2006] attempt at documenting knowledge about design rational in

software architecture based on three levels: implicit, documented, and formalised

knowledge. Implicit knowledge is private knowledge not shared by architects, and

116



www.manaraa.com

6.2 Related work

may not be realised at all. Documented knowledge is exemplified in the repre-

sentation of architecture views. Formalised knowledge is documented knowledge

but has clear and concise descriptions of the architecture, captured for example

by Architecture Description Languages (ADL). Ven et al. [2006] classification

is complimentary to the knowledge model. But Ven et al. classification is

specifically described for architecture knowledge. For example, the classification

excludes knowledge about goals not part of the architecture documentation, such as

business goals. It also does not describe the process of recognising new knowledge,

how implicit knowledge becomes documented.

Other approaches: Ali et al. [2009] introduces ‘goals’ as a way of identifying

requirements’ context using the contextual goal model. The model categorises the

goal context into: actors, decomposition (OR and AND), goal activation, means-end,

and contribution to soft-goals. The model is based on the concept that goals are

the context of the system. This excludes the analyst’s view (perception) and the

different levels of priority for each goal.

Bübl [2002] uses context properties to describe models. Metadata attached

with a model is referred to as ‘context’. When a model is assigned a context

property, the information in the property describes how and where the model, or

an element, is used. Context property may include several fields, Bübl’s three

general context properties: workflow holds requirement specification added by

designers, personal data indicating whether the model holds private information,

operational area represents information about where the model is implemented

from an organisational perspective. Such added data to the model become part

of the context and may provide more information used by developers to clarify

where the system is to be implemented, but are typically inconclusive. It is also

not clear how descriptions are managed for a model implemented in more than one

context. Such choices of context elements to document, or attach to a model, face

the question of relevance. How to decide which contextual elements are relevant?

Bruin et al. [2002] introduce Feature-Solution graphs (FS-graph) to capture

design decisions that impact quality. An FS-graph is formed by two graphs: a

feature graph and solution graph. Features are connected to solutions by edges of

two types: selection or a rejection. Depending on the system context edges states

are adjusted. But the context of the graph is limited to the internal elements

part of the design space, what is regarded as features and solutions. The context

approach presented here, is open to any element that is part of the system concern.

Furthermore, knowledge about the context is graduated, which is not recognised

by the FS-graph approach.

117



www.manaraa.com

Chapter 6: Summary and Conclusions

6.3 Summary of contribution

In what follows a summary is introduced of the contributions of the presented

research on context and the approach to analyse context to explore how systems

vary. The summary includes main contribution of what was presented in Chapter 2

and chapters within Part II.

First contribution: the synthesis of context: Chapter 2 introduced a novel

view of context as possessing two dimensions—influence and perception. Early

attempts to explain why systems vary have led to identify the influence of

context as the main source of software/system variation. Further investigation

on the topic have led to identify views from literature that have emphasised the

influence of context on system decisions. These view were identified in software

engineering, and other disciplines such as anthropology, linguistic, philosophy,

and building architecture. Other views from literature have also supported the

role of perception. The review of literature concluded that there is a need to

arrive at a synthesis of views about context, context as influence and perception.

The new view synthesised view should replace the classical view in software

engineering, that ‘context’ as ‘setting’ system boundaries. Other views within

software engineering have shown signs of departing from ‘setting the system

boundary’ view, but without necessarily using the term ‘context.’ The synthesis

of context is supported by five themes identified from the literature. The thesis

has attempted to realise each theme within the proposed approach. The identified

themes are presented in Table 2.3, and what follows provides a list of themes on

context:

1. Relevance is directed by knowledge,

2. Context has influence,

3. Context has states,

4. Context is a set of connections,

5. Context regresses endlessly.

Second contribution: the Context Dynamics Matrix (CDM): Chapter 3

introduced two models of context: the force model for influence, and the knowledge

model for perception. Both models are represented in terms of states within the

CDM, where a context state becomes an ‘influence based on perception.’ A state

shift occurs if the influence changes or the perception changes. Using the matrix it

118



www.manaraa.com

6.4 Limitations of contribution

is possible to compare context states across different systems independently from

system elements. As a result, analysts may use context states to show where

elements within the system may vary.

The ideas presented in Chapter 3 follows three of the five themes of context

identified from the literature—previously presented in Chapter 2. The knowledge

model of perception follows the first theme, that relevance is directed by knowledge.

The force model for influence follows the second theme, that context has influence.

The CDM follows the third theme, that context has states.

Third contribution: Mapping context states to DFD: Chapter 4 presents a

way to build the context of the system as a whole in terms of individual context

states using the CDM, by assigning context states to DFD. By adding context

states, analysts may reflect their own understanding of how the system functions.

They may also expand, by identifying context states of processes and data flow, on

how the DFD view of the system may or may not vary.

Chapter 4 supports two of the five themes of context identified from the

literature. Mapping context states to DFDs by representing the context of data flow

and processes/terminators follows the theme that context is a set of connections.

The theme that ‘context regresses endlessly,’ is followed by the unfolding process

[Alexander 2002] supported by DFDs. The mapping of context states completes

addressing the themes that Chapter 3 did not address. It encompasses, in a way

of synthesis, the identified views about context from literature represented by the

five themes.

6.4 Limitations of contribution

The research presented by this thesis is limited mainly by the study presented in

Chapter 5. The study has shown how the approach to model context provide a

series of implications on how the system may vary. But the results and conclusions

of the study have the following limitations:

• The PDA study presented in Chapter 5, was conducted on an industrial

project within a controlled environment. Although it was conducted on a real

set of requirements, a more realistic evaluation of the approach is to perform

the analysis as the requirements are interpreted and discussed. Much of the

contextual transformations that the context states capture occur during the

process of reading and understanding the system through requirements as

they are analysed.

119



www.manaraa.com

Chapter 6: Summary and Conclusions

• The analysis and modelling of the context of the PDA requirements are

derived from scenario-based statements within an event-action table (Ap-

pendix B). Each statement was derived from a different format of re-

quirements, which indicates that the requirements have evolved into the

present state. Therefore, the study becomes limited to the requirements in

its final scenario-based format. As discussed previously in Chapter 2 the

scenario-based technique is part of what was identified as the common-sense

approach to context. Thus the scenario-based technique may have more

contextual detail, not provided by other techniques, that makes the process of

modelling context possible. A more comprehensive study of the requirements

of the PDA system would require the use of the initial set of requirements

used before arriving at the scenario statements.

• The evaluation of the approach involved only one analyst, and limited

interaction with external stakeholders. Thus the study demonstrates the use

of the approach through a single view over one iteration. While the may

be used by analysts individually, the analysis is unlikely to be conducted

in isolation. Accordingly, the study shows limited evidence on how the

context states improve the communication between system developers or the

understanding of the requirements.

• The PDA study demonstrated how context states imply sources of system

variation. But the study did not show whether the system in reality behaved

in accordance with the implications of context states. In order to collect such

evidence, the study must first identify for each case what change had occurred

and within which context. But because the context states are identified for

the context of systems under development, it was not possible to obtain such

information since the system had already been implemented.

6.5 Overall conclusion

The overall conclusion of the research is within the answer to the question posed

earlier: what is context? The proposed answer seeks to be pragmatic. Instead of

focusing on what ‘context’ is, it is more useful to show how context could be used.

Thus the use of the CDM, extending DFD, and the implications that all of these

techniques have on how to vary the system; is only part of what could be gained

from the use of the concept. Thus far, what was explored by the implications of

modelling context on variation, is only a narrow aspect of what the a system could

offer when its context is modelled. The difficulty of how to interpret a system’s

context states, is to maintain focus on a single view to provide a clear interpretation

120



www.manaraa.com

6.5 Overall conclusion

of results.

When context states of the PDA system was presented to a member of the

development team, it was possible to draw from the map possible implications

other than variation. It was surprising, and at times confusing, how to draw

two seemingly unrelated conclusions from the same element, without identifying

a conflict. For example, under the influence of fit, an element’s opportunity to

vary are limited. But fit also implies that an element under its influence may

fail because it was not able to comply with the demands of fit. It is not clear,

however, whether there is a necessary correlation between the implications of

variability and failure, with other context states other than what is observed for

fit. Under the influence of taste-and-passion there is the ability to vary because

the consequence is assumed not to be severe. But it is possible to view that the

result of not being able to vary under taste-and-passion is undesirable, at times,

as not being able to satisfy the preference that created it in the first place. The

trade-off becomes whether to vary to achieve functionality but loose preference,

or not achieve functionality and satisfy a preference. Underlies the ability to

vary within the influence of taste-and-passion and culutre, is the assumption that

achieving functionality is the main preference. But when under fit, functionality

may not be achieved without complying with its measures. Measures of fit and

functionality become one.

Accordingly, it is possible to observe that a possible connection between

variability and failure may be associated with the concept of misfit that Alexander

[1964] proposed. Misfits that occur under an influence of fit, are misfits that cause

the system to fail. But misfits that occur under an influence of taste-and-passion

may not cause the system to fail per se, but may lead to undesired result,

manifested in customer dissatisfaction for example.

The research also challenges the notion that context is used more effectively

through common-sense. The common-sense approach, as argued previously, has

shown success in software engineering through the use of scenarios. But because

context regresses endlessly, it forms a burden on the intellect that analysts cannot

use there common sense effectively with multiple context instances. What the

use of context states to enrich DFDs have shown, is that it is possible to gain

considerable advantages when the analyst’s common sense is guided to build the

context of a system through a more complex set of context structures.

Ultimately, what this research has attempted to demonstrate, is the effec-

tiveness that might be gained, if analysts achieve a balance between a purely

common sense approach to context and the more formal approach to context as

boundaries. In the spirit of Scharfstein’s (1989) dilemma of context, the balance

121



www.manaraa.com

Chapter 6: Summary and Conclusions

between extreme contextualisim and total abstractionism, is achieved through a

stepwise process of synthesis between the influence of context and its perception.

6.6 Recommendations for future work

Future work should address the limitation of the research thus far. This is achieved

through the support of the application of the context approach by providing further

evidence that supports what has been demonstrated so far. Further evidence may

be obtained by establishing an engagement with industry, and provide additional

examples of how systems behave in accordance with the proposed context model.

There is also the need to make the approach more usable, which is achieved by

defining contextual patterns, or alternatively called archetypes. Further support

of the usability of the approach and to gathering evidence is achieved through the

development of tool support. It also possible to generalise the application of context

states through two means. First, by applying a general approach to map context

states, using context-maps Alshaikh and Boughton [2009] for example. Second, to

identify context scenarios over the life time of a project cycle, the whole project, or

the life of the system as a whole.

6.6.1 Industrial-scale evaluation

An advantage of the context approach is that it does not necessarily need to replace

any current system practices on the level of requirements or design, but it can be

used in parallel. This should make it easier to engage with a medium to large scale

projects without the need to replace any of their followed practices.

The evaluation should be performed by selecting three to five members to

participate in a study while they are involved in the same industrial project for

one or two months. They should be from different backgrounds and responsibilities

within the project, they could be formed by project managers, designers, analysts,

or clients. Each team member is asked to identify context states from require-

ments, and follow the changes in context as each member perceives them. With

the support of an analysis tool that captures the process of assigning context states

and following their transitions, each member should submit versions of their view

of the system through context states on a regular basis.

The aim of the evaluation is to identify correlation between what the context

states identify about the system and how the system behaves under each identified

context state. What follows lists some of the main research questions that the such

a project may answer.

122



www.manaraa.com

6.6 Recommendations for future work

• How does the context states help team members to take system decisions?

• Can the context states identify contextual thresholds, that motivate system

developers to change the system and as result change its context?

• Can the context states provide a reliable indicator of how the system may

vary within a particular stage of development, such as requirement analysis.

• Can the perception model be a reliable measure of the success or failure of a

development project?

• Can the influence model be a reliable measure of the success or failure of a

development project?

• Can the study identify shifts in context states within the CDM that follow a

predictable pattern?

6.6.2 Provide additional examples

The context approach requires further examples to support the results obtained

so far. The PDA example demonstrated how to apply context states through the

interpretation of scenarios based on requirements. Two more examples should be

provided that vary on terms of mission and scale.

The application of the approach has been carried in areas outside of the soft-

ware and systems domain. An example is developed by Chemboli et al. [2010] in the

area of course design using workflow management, which presents contextually

enriched models using context states. The results of such application of the

approach outside the software and systems domain, encourages the application

of the context states outside software, such as architecture design and product line

engineering. In fact, currently there are some attempts to apply the approach to

political science in the area of international relations.

These examples indicate how diverse and wide is the interest in modelling

context for various aims. But while the focus should be to select examples from the

area of software and system domain, it is possible to extend to examples lie within

the domain boundary of the discipline, such as software economics.

6.6.3 Reduce the complexity of contextual analysis

While the process of building context enriched DFD representation of software

systems is generally simple, especially for small to medium size systems, it might

become a tedious process if applied to larger systems. This is largely due to the

123



www.manaraa.com

Chapter 6: Summary and Conclusions

complexity of analysing context itself, as a result of the shell problem for example.

Therefore, there is a need to simplify the process further. This was first attempted

at the beginning of the research by establishing two levels of representation, a

simple one that the diagram shows, and a more complex one within analysis, see for

example Alshaikh and Boughton [2009]. But because maintaining a link between

both levels was believed to be error prone, and involves unnecessary redundancy,

it was replaced by the current approach to use DFD instead.

Recently, however, contextual patterns were easily identified within the pro-

cess of identifying context states that suggests using an auxiliary set of patterns

identified as archetypes. These set of archetypes are defined and understood

context state examples that may apply to more than one system. An example of

such an archetype is the context centre ‘password’ in the PDA system. In this

case the influence that ‘password’ places on users is fit based on theory (Fit:T), and

the force placed on ‘password’ by the system is taste-and-passion based on theory

(T&P:T). The context states of ‘password’ are archetypical, because most systems

that use ‘password’ have the same context state(s). While it is possible to have

a password that does not apply the same forces because it is within a different

context, it would not be archetypical, however. Thus using the archetypical

method, it is possible to reduce the effort of identifying forces if the decision is

made that the context follows a particular example.

While the use of archetypes have not yet been tested yet, the use of this method

on selected examples have shown some promising results. It is the hope that by

the use of this method, that the context of a domain may be identified through a

set of archetypes that can be themselves the target of study across systems. Thus

offering a new dimension on the research of context analysis.

6.6.4 Tool support

Tool support enhances the study of system context in two ways, by simplifying

the process of building DFD and assigning context states, and assist analysts to

maintain a record of when and how the context of the system transforms. A tool,

C-Map, is currently under development. C-Map may serve partly as a research

assistant tool and as a development tool. The tool provides partial automation

of the process of analysing the context of software systems based on textual

requirements. Thus the aim in future work, is to develop a fully functional version

of C-Map, which should support the use of the approach in industry.

For a more complete tool framework, a second version of the tool should provide

support for context analysis of architecture and design. The tool should allow the

analysis to proceed from requirements to architecture following a stepwise process.

124



www.manaraa.com

6.6 Recommendations for future work

The tool then would allow analysts to obtain a more in depth analysis of the context

of the system as the analysis of requirements extends to other software stages, such

as architecture.

6.6.5 Expand DFD to a more general representation

In Alshaikh and Boughton [2009] the approach to use context-maps, an approach

represent context states, were presented. Context-maps are based on the concept of

focal points, previously mentioned in Chapter 4, in the discussion of centres as part

of the unfolding process [Alexander 2002]. But because the context-map approach

to represent context states has introduced considerable complexity to the process

of context analysis, representing context was replaced by the use of DFD.

Similar to DFD, context-maps show data, represent connections between

external and internal system elements, but it does not limit description to process

and data flow. Furthermore, context-maps show promising results on how it

is possible to expand the analysis to other elements that DFD do not typically

represent, such as choices between implementation technologies. For example, in

the PDA requirements the use of Bluetooth as a way to communicate between

PDA and C-PDA during the election. Using DFD, the communication between

PDA and C-PDA is represented independently as processes, and the technology

used for communication is not represented. But using context-maps, it is possible

to represent such elements.

Yet, one source of the complexity that context-maps may bring to the analysis,

relates to the order of which analysts represent system views. Part of the confusion

that may be added to the complexity of the use of context-maps, is to decide on the

order to introduce system views for analysis. Using DFD to represent the context

states of the system, compared to the view of context-maps, may be a step within

the order of introducing system views. The move may be introduced as a process to

transit from the functional view to other system views, such as architecture.

System views, however, should be independent context-states, because some

context states of the design views may be identified even while other views are

discussed separately. For example, the context of ‘password’ in the functional/DFD

view of the system should not change when the view of architecture/design is

considered. The influence of fit that ‘password’ applies on ‘polling official’ should

remain unchanged. Future work will focus on how to successfully manage an

effective order of introducing system elements for analysis. An effective order may

be found in generalising the order of unfolding of analysis that DFD follows, to

architecture and design.

125



www.manaraa.com

Chapter 6: Summary and Conclusions

Figure 6.1 – The progression of the context state of telemetry request and execute

commands, where influence remains constant and perception increase in a steady

progression.

6.6.6 Context state transition scenarios

Context state transition scenarios describe how context states perform multiple

transits. A research question that comes as a result of describing context in terms

of states, is how context states transit over time, and whether it is possible to

identify a predictable series of transitions.

Figure 6.1 shows an ideal scenario considered for the process of software

development starting from the analysis of requirements. This scenario assumes

that the context state transits within a controlled system process, which reviews

requirements and engages with stakeholders continuously in knowledge driven

process to understand the system and its requirements. In such process, system

drivers and decision makers are always trying to build their system on explicit

knowledge and avoid conjecture. By increasing the knowledge of the system,

developers strive to increase their knowledge about the system and as a result

drive context states to transit to stronger perception levels. Consider the example

of ‘password’ mentioned in PDA requirements (Appendix B).

The scenario that Figure 6.1 presents, includes a graph of the two dimensions

of influence and perception on the y-axis, and time on the x-axis. The graph

126



www.manaraa.com

6.6 Recommendations for future work

Figure 6.2 – The progression over time of the context state of a system that introduces

an authentication mechanism that changes the influence from function to fit.

represents the scenario of the influence of ‘polling official’ on ‘password’ recognised

as function based on semantics. On the influence dimension, the graph is flat, it

remains unchanged over the time of the project. But on the perception dimension,

the the graph shows a continuous rise in perception, starting from judgement

at the beginning of analysis until it reaches to truth-reality when the system is

implemented. What supports the increase in perception is the growing knowledge

and confidence about the context of the system. But what are other possible

scenarios that may derive both changes in influence and perception?

Consider the scenario represented by Figure 6.2. In this scenario, the context

of a system element starts under a force of function, such as the influence on polling

official by the PDA system without using an authentication mechanism. But as the

system is in the process of writing requirements—notice the increase of perception

from judgement to semantics—a shift in influence occurs from function to fit. One

possible rational for this shift, that the need for an authentication mechanism was

not realised at first, but when the requirements were written, the need to allow

users access after they provide proper authentication emerged. As a result, the

force of function applied by PDA is replaced by fit on all users.

But is it possible for the authentication scenario to go through another context

state shift? For example, it is possible that after the force of function shifts to

127



www.manaraa.com

Chapter 6: Summary and Conclusions

Figure 6.3 – Context scenario showing a series of transitions. Influence is represented

by the thick graph transiting from function,fit, and to taste-and-passion. Perception is

represented by the thin line transiting from judgement to semantics, then gradually to

truth-reality.

fit, stakeholders recognise that they prefer to gain access to the PDA with or

without authentication. Users, then, may have different features of the system

may be shown to them when they enter without proper authentication, and

enhanced features are shown when the authentication is used. As a result, users

may be influenced by taste-and-passion. Figure 6.3 shows the shift from fit to

taste-and-passion while the perception is based on semantics.

Context scenarios may represent a novel approach to describe the dynamics of

systems through context states. Further research should aim to explore various

context scenarios to try to establish a correlation between system variation and

variation of context over time. It is possible also to study the context variation of

archetypes, where context states of general examples are explored over the history

of their use across multiple systems.

6.7 Closing remarks

Looking at what was achieved during the life of my research project, I expect that

the study of software and system’s context, along with what remains as serious

128



www.manaraa.com

6.7 Closing remarks

research challenges, should provide new insights into the nature of software

systems and system development. But the study of context also exposes the need

to consider a multidisciplinary approach to the study of context as a complex

phenomena.

It is my intention to proceed with this work seeking answers to all the difficult

and interesting questions posed by the topic, following the approach presented

by this thesis, as long as the approach remains useful, and the questions to be

answered remain relevant.

—————The End—————

129

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Part

IV
Appendices

Notes on the Synthesis of Context A novel approach to model context inالعنوان:
software engineering

.Al Shaikh, Ziyad Aالمؤلف الرئيسي:

Boughton, Clive(Super)مؤلفين آخرين:

2011التاريخ الميلادي:

كانبيراموقع:

185 - 1الصفحات:

:MD 616120رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

Australian National Universityالجامعة:

College of Engineering and Computer Scienceالكلية:

أسترالياالدولة:

Dissertationsقواعد المعلومات:

صناعة البرمجيات ، برامج الحاسبات الالكترونية ، هندسة البرمجيات ، النمذجة ، النظممواضيع:
الخبيرة

https://search.mandumah.com/Record/616120رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/616120


www.manaraa.com

Part

IV
Appendices



www.manaraa.com



www.manaraa.com

Appendix

A
Proof-of-Concept: Context

States of the Voter Mark-off

System

Contents

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.2 Context states of context-diagram . . . . . . . . . . . . . . . . . 134

A.2.1 Context state of the system as a whole . . . . . . . . . . . . . 134

A.2.2 Context states of context-diagram—second level . . . . . . . 135

A.2.3 Context states of context-diagram—third level . . . . . . . . 136

A.3 Context states of DFD-0 . . . . . . . . . . . . . . . . . . . . . . . . 139

A.3.1 Context states of DFD-0—second level . . . . . . . . . . . . . 139

A.3.2 Context states of DFD-0—third level . . . . . . . . . . . . . . 140

A.4 Re-scoped context-diagram . . . . . . . . . . . . . . . . . . . . . 142

A.4.1 Context states of context-diagram—second level . . . . . . . 142

A.4.2 Context states of re-scoped context-diagram—third level . . 143



www.manaraa.com

Appendix A: Proof-of-Concept: Context States of the Voter Mark-off

System

A.1 Introduction

What follows are the results of the analysis of the context of the PDA system

presented in Chapter 5. Context states are presented in tabular format:

Element| <state|state> |Element| Description

The table may be mapped to DFDs, whenever applicable, the left element is

positioned on the left of the diagram, and the right element is at the right. The

context state on the left represents includes the influence that the right element

places on the left element, and the right context state includes the influence

that the left element places on the right element. The description whenever

applicable, describes the influence and the perception. In most cases, where the

perception is baed on semantics, a reference to the statement from requirements

that the influence was perceived under. The reference is code used for the

original requirements attached in Appendix B. Some of the influences perceived

under semantics are obtained from the verbal description provided by the system

developer.

Context states are presented in the order they appeared in Chapter 5. First, the

context-diagram of the manual system. Second, the DFD-0 of the manual system

and the after introducing PO and PDA. Finally, the context-diagram of the re-

scoped system after adding PO and PDA. Context states are presented in three

levels. The first level is the context state of the system as a whole. The second level

present context state of the each DFD without data flow. The third level present

context states of DFDs with data flow.

A.2 Context states of context-diagram

A.2.1 Context state of the system as a whole

Element State Description

Voter Mark-off System C:J The developed system is under the influence

of the culture of the manual system. The re-

ality of this influence is based on judgement,

and may need to be confirmed.

Table A.1 – Context state of the system as a whole

134



www.manaraa.com

A.2 Context states of context-diagram

A.2.2 Context states of context-diagram—second level

Table A.2 – Context states of context-diagram—second level

Element <State State> Element Description

Voter C:V Func:S Voter Mark-

off System

Voter demands functionality

from the system, but the Sys-

tem will provide its service

according to its cultural de-

mands. The functional de-

mands that voters show is de-

scribed by requirements (M.1),

and the demands for voters to

provide information to the sys-

tem is described by the ACTEC

as part of its procedures [?].

Mark-off List Func:S C:J Voter Mark-

off System

Mark-off List may exist before

the process of marking off vot-

ers commences. Thus it influ-

ences the system according to

its culture. As a result, the

system’s demands may only be

functional when it adapts to

the structure and data defined

for the list. Reference for the

functional influence is men-

tioned by requirements (e.g.,

D.7).

Voter Mark-

off System

C:J Func:J ACTEC Elec-

toral Roll

The structure of the elec-

toral roll may be defined be-

fore the system is developed,

which forces it to comply to it.

The system, however, only de-

mands functionality from the

ACTEC Electoral Roll.

135



www.manaraa.com

Appendix A: Proof-of-Concept: Context States of the Voter Mark-off

System

A.2.3 Context states of context-diagram—third level

Table A.3 – Context states of context-diagram—third level.

Element <State State> Element Description

Voter — Func:S Voter Data Voter demands from Voter

Data to perform the function

of marking him/her from the

electoral roll based on require-

ments (M.1).

Voter Data Fit:T Func:S Voter Mark-

off System

Voter Data will have access

to the system to perform its

function, but the system will

demand from it to fit to its

stored data. The influence of

Voter Data is drawn from re-

quirements (e.g. M.3). The

demand by the system for the

Voter Data to fit its stored data

is referenced by multiple state-

ments (M.3–M.9).

Voter Func:S Func:S Feedback Voter is required to receive

feedback from the system,

as mentioned by the

requirements (M.2). The

feedback should inform the

Voter with the result of the

search.

Feedback Func:S — Voter Mark-

off System

Feedback is provided during

the process of search. The

system demands from the

feedback to be informative

(functional).

Continued on next page

136



www.manaraa.com

A.2 Context states of context-diagram

Section A.2—continued from previous page

Element <State State> Element Description

Voter Func:S Func:S Request Voter receives a request that

he/she can respond to, such

as providing additional data:

DoB, address, and middle

name. When a match found,

the Voter may be asked to

provide additional information

as a way to confirm his/her

identity. Requests are part of

the functionality of verifying

the identity of Voter, as

mentioned by requirements

(M.2).

Request Func:S — Voter Mark-

off System

The system demands from Re-

quest to perform its function

to communicate to Voter the

needed data, as described by

requirements (M.2).

Voter — Func:J Ballot Paper

+Instruc-

tions

Voter receives ‘Ballot

Paper+Instructions’ from the

system after being marked off

the list. Voter demands from

the ‘Ballot Paper+Instructions’

to be functional when used to

cast his/her vote.

Ballot Paper-

Instructions

Func:J — Voter Mark-

off System

The system may demand from

‘Ballot Paper +Instructions’ to

functional—by checking the

ballot paper.

Voter Mark-

off System

Func:J Func:J Voter Details Both the system and ‘Voter

Details’ demand functionality

from each other when trans-

ferred. The details of the

this process is not described by

requirements.

Continued on next page

137



www.manaraa.com

Appendix A: Proof-of-Concept: Context States of the Voter Mark-off

System

Section A.2—continued from previous page

Element <State State> Element Description

Voter Details Func:J — ACTEC Elec-

toral Roll

‘Voter Details’ is under the

influence of ACTEC Electoral

Roll to provide functionality

when sent to the system.

Voter Mark-

off System

— Func:S VoterID+Voted ‘Voter Mark-off System’ de-

mands from ‘VoterID+Voted’ to

be provide needed functional-

ity to be stored in the ‘Mark-off

List’ according to requirements

(D.7).

VoterID+Voted Fit:J Func:S Mark-off List ‘Mark-off List’ may demand

‘VoterID+Voted’ to fit to its ca-

pacity. But ‘VoterID+Voted’ de-

mands from ‘Mark-off List’ to

allow it to be stored in the

list (see requirements starting

from D.7).

138



www.manaraa.com

A.3 Context states of DFD-0

A.3 Context states of DFD-0

A.3.1 Context states of DFD-0—second level

Table A.4 – Context states of DFD-0—second level.

Element <State State> Element Description

Import Elec-

toral Roll

Fit:J Func:J Electoral

Roll for

Mark-off

‘Import Electoral Roll’

demands from ‘Electoral

Roll for Mark-off ’ to perform

its function and store the

imported data, but ‘Electoral

Roll for Mark-off ’ would only

accept the data if it fits to its

capacity.

Establish

Voter Valid-

ity/Search

Voter

Func:S Func:S Electoral

Roll for

Mark-off

The interaction between

‘Establish Voter Validity’ and

‘Electoral Roll for Mark-off ’ are

based on functional demands

to identify search for voter

details obtained from the

‘ACTEC Electoral Roll.’

Establish

Voter

Validity/Per-

form PO

Operations

— Func:J Issue Ballot

Paper & In-

structions

‘Establish Voter Validity’ de-

mands from ‘Issue Ballot Paper

& Instructions’ to produce a

ballot when it is notified that

a voter has been marked from

the electoral roll.

Perform PO

Operations

T&P:S Func:J Search for

Voter

‘Perform PO Operations’ uses

‘Search for Voter’ to obtain

voter details. It demands func-

tionality when it searches for

data. ‘Search for Voter’ al-

lows ‘Perform PO Operations’

choices to search for, which

leaves the search to be accord-

ing to preference.

139



www.manaraa.com

Appendix A: Proof-of-Concept: Context States of the Voter Mark-off

System

A.3.2 Context states of DFD-0—third level

Table A.5 – Context states of DFD-0—third level.

Element <State State> Element Description

Voter Data Fit:T Func:S Establish

Voter

Validity

‘Establish Voter Validity’ de-

mands from ‘Voter Data’ to fit

to the stored voter name, while

‘Voter Data’ requires from ‘Es-

tablish Voter Validity’ to pro-

vide functionality.

(FSMAD)

FirstName

+ Surname

+ (Middle-

Name) +

(Address) +

(DoB)

Fit:J Func:S Establish

Voter

Validity

‘Establish Voter Validity’ de-

mands from ‘FSMAD’ to fit

to the query that requested,

while ‘FSMAD’ requires ‘Es-

tablish Voter Validity’ to allow

it access to the process.

Perform PO

Operations

— Func:S Voter Data ‘Perform PO Operations’ de-

mands from ‘Voter Data’ to per-

form its function to search for

stored data.

Voter Data Fit:T T&P:J Search for

Voter

‘Search for Voter’ demands

from ‘Voter Data’ to fit the

stored data. ‘Voter Data’ may

require from ‘Search for Voter’

to preform at a certain pre-

ferred performance.

Instances Func:S — Search for

Voter

‘Search for Voter’ demands

from ‘Instances’ to perform its

function when it returns re-

sults (e.g., M.6.1).

Continued on next page

140



www.manaraa.com

A.3 Context states of DFD-0

Section A.3—continued from previous page

Element <State State> Element Description

Perform PO

Operations

Func:S Func:S Instances ‘Perform PO Operations’

demands from ‘Instances’ to

perform its function when it

returns results (e.g., M.6.1),

while ‘Instances’ demands

from ‘Perform PO Operations’

to show the results returned

by ‘Search for Voter.’

Electoral

Roll for

Mark-off

Func:S Fit:T FSMAD ‘Electoral Roll for Mark-off ’ de-

mands from ‘FSMAD’ to fit to

its stored data. While FSMAD

demand the functional goal be-

hind sending it, that is, for

‘Electoral Roll for Mark-off ’ to

obtain voter details.

Establish

Voter

Validity

— Func:J Voter OK ‘Establish Voter Validity’ may

require ‘Voter OK’ to perform

its function to issue a ballot

paper and instructions.

Voter OK — Func:J Issue Ballot

Paper & In-

structions

‘Voter OK’ demands from ‘Issue

Ballot Paper & Instructions’ to

perform its function of produc-

ing a valid ballot paper and

correct instructions.

Establish

Voter

Validity

— Func:J Voter OK ‘Establish Voter Validity’ may

require ‘Voter OK’ to perform

its function to issue a ballot

paper and instructions.

Voter OK — Func:J Issue Ballot

Paper & In-

structions

‘Voter OK’ demands from ‘Issue

Ballot Paper & Instructions’ to

perform its function of produc-

ing a valid ballot paper and

correct instructions.

141



www.manaraa.com

Appendix A: Proof-of-Concept: Context States of the Voter Mark-off

System

A.4 Re-scoped context-diagram

A.4.1 Context states of context-diagram—second level

Table A.6 – The context states of the context-diagram—second level.

Element <State State> Element Description

PO T&P:S T&P:J Verify Voter ‘Verify Voter applies a force of

taste-and-passion on PO based

on semantics, because it allows

the PO to search the system

using more than one element:

‘First Name, ‘Address, ‘DoB,

and so on. Similarly, PO may

search for Voter without using

the system, by going back to

the manual electoral roll.

Mark-off List Func:S C:J Verify Voter Mark-off List may exist before

the process of marking off vot-

ers commences. Thus it influ-

ences the system according to

its culture. As a result, the

system’s demands may only be

functional when it adapts to

the structure and data defined

for the list. Reference for the

functional influence is men-

tioned by requirements (e.g.,

D.7).

Verify Voter C:J Func:J ACTEC Elec-

toral Roll

The structure of the elec-

toral roll may be defined be-

fore the system is developed,

which forces it to comply to it.

The system, however, only de-

mands functionality from the

ACTEC Electoral Roll.

142



www.manaraa.com

A.4 Re-scoped context-diagram

A.4.2 Context states of re-scoped context-diagram—third level

Table A.7 – Context states of re-scoped context-diagram—third level.

Element <State State> Element Description

PO — Func:S Voter Data Voter demands from Voter

Data to perform the function

of marking him/her from the

electoral roll based on require-

ments (M.1).

Voter Data Fit:T T&P:J Verify Voter Voter Data will have access

to the system to perform its

function, but the system will

demand from it to fit to its

stored data. The influence of

Voter Data is drawn from re-

quirements (e.g. M.3). The

demand by the system for the

Voter Data to fit its stored data

is referenced by multiple state-

ments (M.3–M.9).

Verify Voter Func:J Func:J Voter Details Both the system and ‘Voter

Details’ demand functionality

from each other when trans-

ferred. The details of the

this process is not described by

requirements.

Voter Details Func:J — ACTEC Elec-

toral Roll

‘Voter Details’ is under the

influence of ACTEC Electoral

Roll to provide functionality

when sent to the system.

Verify Voter — Func:S VoterID+Voted ‘Verify Voter’ demands from

‘VoterID+Voted’ to be provide

needed functionality to be

stored in the ‘Mark-off List’

according to requirements

(D.7).

Continued on next page

143



www.manaraa.com

Appendix A: Proof-of-Concept: Context States of the Voter Mark-off

System

Section A.4—continued from previous page

Element <State State> Element Description

VoterID+Voted Fit:J Func:S Mark-off List ‘Mark-off List’ may demand

‘VoterID+Voted’ to fit to its ca-

pacity. But ‘VoterID+Voted’ de-

mands from ‘Mark-off List’ to

allow it to be stored in the

list (see requirements starting

from D.7).

144



www.manaraa.com

Appendix

B
Proof-of-Concept: Requirements

of the Voter Mark-off System

Contents

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

B.1 Introduction

The requirements in the form of an even-action lists of the PDA system is provided

here. It is divided into three parts: accessing the PDA, marking an elector (voter)

off the electoral roll, reporting, and data transfer. The statements, and the format

of the requirements are presented here in their original form that was used to

analyse the system using DFD, and obtain knowledge of the context of the system.

But as the tables show, each row points to the original requirements that were

used to obtain these scenarios. The event-action list tables are republished with a

special permission from Software Improvements Pty Ltd.

146



www.manaraa.com

B.1 Introduction

147



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

148



www.manaraa.com

B.1 Introduction

149



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

150



www.manaraa.com

B.1 Introduction

151



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

152



www.manaraa.com

B.1 Introduction

153



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

154



www.manaraa.com

B.1 Introduction

155



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

156



www.manaraa.com

B.1 Introduction

157



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

158



www.manaraa.com

B.1 Introduction

159



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

160



www.manaraa.com

B.1 Introduction

161



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

162



www.manaraa.com

B.1 Introduction

163



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

164



www.manaraa.com

B.1 Introduction

165



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

166



www.manaraa.com

B.1 Introduction

167



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

168



www.manaraa.com

B.1 Introduction

169



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

170



www.manaraa.com

B.1 Introduction

171



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

172



www.manaraa.com

B.1 Introduction

173



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

174



www.manaraa.com

B.1 Introduction

175



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

176



www.manaraa.com

B.1 Introduction

177



www.manaraa.com

Appendix B: Proof-of-Concept: Requirements of the Voter Mark-off System

178

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Abstract

Context is often considered as a source for system change and variation. But the

term ‘context’ has been typically used to mean the act of setting boundaries and

setting system scope in software engineering. In this thesis, I challenge this view

by suggesting that context should be applied to imply system variation on all levels

of software (system) development. It constitutes as a more complex phenomena

of how the system interacts with the world. The suggested alternative approach

synthesises context in terms of influence and perception through context states.

Context states are represented by a sixteen context state matrix, I refer to

as The Context Dynamics Matrix (CDM). Context states are the result of two

dimensions of context, perception on the x-axis, and influence on the y-axis.

Analysts may identify context of a system using the CDM when they identify the

influence that an element exerts and assign their perception of how they identified

the influence. Both the influence and perception dimensions are modelled using

two models. First, the force model of influence, which identifies four levels of

influence that an element may apply, each level shows a different implication on

variation. Second, the knowledge model for perception, which shows five sources of

knowledge about the influence/context. Accordingly, an analyst may describe the

context of a system by matching the level of influence with the level of perception

to obtain the context state of a given system element. A context state may imply

a high or low level of variability, and a high or low level of perception. The use

of context states is independent from any modelling view of a system that either

describes functionality or system structure.

Because context states describe the context of a system independently from the

level/view in which they are described, it is possible to map the context states

to enrich the description of a given view. Accordingly, I show how to map context

states to functional description of systems by assigning context states to Data Flow

Diagrams (DFD). Processes and data flow are assigned context states that enrich

their description of the system, in terms of levels of variation that the context may

imply.

A proof-of-concept is provided to demonstrate how to apply context states to

the analysis of the requirements of a system from industry. The results of the

study show the viability of using context states to describe the context of system,

and support the argument to experiment further to evaluate the effectiveness of

context states in areas of system development not covered by my research.

Notes on the Synthesis of Context A novel approach to model context inالعنوان:
software engineering

.Al Shaikh, Ziyad Aالمؤلف الرئيسي:

Boughton, Clive(Super)مؤلفين آخرين:

2011التاريخ الميلادي:

كانبيراموقع:

185 - 1الصفحات:

:MD 616120رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

Australian National Universityالجامعة:

College of Engineering and Computer Scienceالكلية:

أسترالياالدولة:

Dissertationsقواعد المعلومات:

صناعة البرمجيات ، برامج الحاسبات الالكترونية ، هندسة البرمجيات ، النمذجة ، النظممواضيع:
الخبيرة

https://search.mandumah.com/Record/616120رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/616120


www.manaraa.com

Abstract

Context is often considered as a source for system change and variation. But the

term ‘context’ has been typically used to mean the act of setting boundaries and

setting system scope in software engineering. In this thesis, I challenge this view

by suggesting that context should be applied to imply system variation on all levels

of software (system) development. It constitutes as a more complex phenomena

of how the system interacts with the world. The suggested alternative approach

synthesises context in terms of influence and perception through context states.

Context states are represented by a sixteen context state matrix, I refer to

as The Context Dynamics Matrix (CDM). Context states are the result of two

dimensions of context, perception on the x-axis, and influence on the y-axis.

Analysts may identify context of a system using the CDM when they identify the

influence that an element exerts and assign their perception of how they identified

the influence. Both the influence and perception dimensions are modelled using

two models. First, the force model of influence, which identifies four levels of

influence that an element may apply, each level shows a different implication on

variation. Second, the knowledge model for perception, which shows five sources of

knowledge about the influence/context. Accordingly, an analyst may describe the

context of a system by matching the level of influence with the level of perception

to obtain the context state of a given system element. A context state may imply

a high or low level of variability, and a high or low level of perception. The use

of context states is independent from any modelling view of a system that either

describes functionality or system structure.

Because context states describe the context of a system independently from the

level/view in which they are described, it is possible to map the context states

to enrich the description of a given view. Accordingly, I show how to map context

states to functional description of systems by assigning context states to Data Flow

Diagrams (DFD). Processes and data flow are assigned context states that enrich

their description of the system, in terms of levels of variation that the context may

imply.

A proof-of-concept is provided to demonstrate how to apply context states to

the analysis of the requirements of a system from industry. The results of the

study show the viability of using context states to describe the context of system,

and support the argument to experiment further to evaluate the effectiveness of

context states in areas of system development not covered by my research.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Contents

Acknowledgements v

Abstract vii

I Introduction 1

1 Overview 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivation and research aim . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Preliminary research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 What is ‘context’? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Context in software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Context in other disciplines . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Synthesis of Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 37

II Contribution 39

3 Context Models 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Influence and perception . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 The Context Dynamics Matrix . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Context Mapping 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Mapping context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Mapping context to DFD . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Notes on the Synthesis of Context A novel approach to model context inالعنوان:
software engineering

.Al Shaikh, Ziyad Aالمؤلف الرئيسي:

Boughton, Clive(Super)مؤلفين آخرين:

2011التاريخ الميلادي:

كانبيراموقع:

185 - 1الصفحات:

:MD 616120رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

Australian National Universityالجامعة:

College of Engineering and Computer Scienceالكلية:

أسترالياالدولة:

Dissertationsقواعد المعلومات:

صناعة البرمجيات ، برامج الحاسبات الالكترونية ، هندسة البرمجيات ، النمذجة ، النظممواضيع:
الخبيرة

https://search.mandumah.com/Record/616120رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/616120


www.manaraa.com

Contents

Acknowledgements v

Abstract vii

I Introduction 1

1 Overview 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivation and research aim . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Preliminary research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 What is ‘context’? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Context in software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Context in other disciplines . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Synthesis of Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 37

II Contribution 39

3 Context Models 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Influence and perception . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 The Context Dynamics Matrix . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Context Mapping 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Mapping context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Mapping context to DFD . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 82



www.manaraa.com

CONTENTS

III Proof of Concept and Conclusion 85

5 Proof-of-Concept: Requirements of the Voter Mark-off System 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Design of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Summary and Conclusions 111

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Summary of contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Limitations of contribution . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Overall conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 Recommendations for future work . . . . . . . . . . . . . . . . . . . . 122

6.7 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

IV Appendices 131

A Proof-of-Concept: Context States of the Voter Mark-off System 133

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.2 Context states of context-diagram . . . . . . . . . . . . . . . . . . . . . 134

A.3 Context states of DFD-0 . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.4 Re-scoped context-diagram . . . . . . . . . . . . . . . . . . . . . . . . . 142

B Proof-of-Concept: Requirements of the Voter Mark-off System 145

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Bibliography 179

x



www.manaraa.com

List of Figures

1.1 Activity diagram showing structure of ideas and results of the thesis. 6

2.1 A DFD context-diagram of a satellite system. . . . . . . . . . . . . . . 18

2.2 Structure preserving shape example. . . . . . . . . . . . . . . . . . . . 31

3.1 The force model of influence . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 The knowledge model of perception . . . . . . . . . . . . . . . . . . . . 49

3.3 A matrix of Alexander’s fit/misfit model . . . . . . . . . . . . . . . . . 53

3.4 The 4x4 sixteen state Context Dynamics Matrix (CDM) . . . . . . . . 54

4.1 A DFD context-diagram of a satellite system. . . . . . . . . . . . . . . 61

4.2 Satellite system data flow level zero. . . . . . . . . . . . . . . . . . . . 63

4.3 The use of THICK BOUNDARY and LOCAL SYMMETRY to enhance the

design of the ornament. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Context states mapped to DFD. . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Context states assigned to the satellite system context-diagram . . . 74

4.6 Context states of context-diagram mapped to CDM. . . . . . . . . . . 76

4.7 Context state of telemetry command . . . . . . . . . . . . . . . . . . . 77

4.8 Context state of telemetry request . . . . . . . . . . . . . . . . . . . . 78

4.9 Context states of DFD-0 mapped to CDM. . . . . . . . . . . . . . . . . 79

4.10 The context of satellite system before adding data. . . . . . . . . . . . 81

5.1 The context-diagram of the voter marking system. . . . . . . . . . . . 90

5.2 A DFD-0 of the voter marking off system. . . . . . . . . . . . . . . . . 92

5.3 A DFD-0 after adding PO and PDA. . . . . . . . . . . . . . . . . . . . 93

5.4 The context-diagram after re-scope. . . . . . . . . . . . . . . . . . . . . 94

5.5 The context-diagram showing only process and terminators. . . . . . 95

5.6 Context-state enriched by context states. . . . . . . . . . . . . . . . . 96

5.7 Validating Voter before and after adding PO and PDA . . . . . . . . . 97

5.8 The context states assigned to the re-scoped context-diagram. . . . . 98

6.1 Standard scenario of the context of a system element. . . . . . . . . . 126

6.2 Context scenario showing shift from function to fit. . . . . . . . . . . 127

6.3 Context scenario showing a series of transitions . . . . . . . . . . . . 128



www.manaraa.com



www.manaraa.com

List of Tables

2.1 Key discriminators between abstractionism and contextualism by

Potts and Hsi [1997]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Comparison between the boundary approach and common sense

approach to context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Summary of themes on context from literature. . . . . . . . . . . . . . 34

5.1 DFD data dictionary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.1 Context state of the system as a whole . . . . . . . . . . . . . . . . . . 134

A.2 The context states of the context-diagram—second level. . . . . . . . 135

A.3 Context states of context-diagram—third level . . . . . . . . . . . . . 136

A.4 Context states of DFD-0—second level. . . . . . . . . . . . . . . . . . 139

A.5 Context states of DFD-0—third level. . . . . . . . . . . . . . . . . . . 140

A.6 The context states of the context-diagram—second level. . . . . . . . 142

A.7 Context states of re-scoped context-diagram—third level . . . . . . . 143

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Notes on the Synthesis of Context

A novel approach to model context in software engineering

A thesis submitted for the degree of

Doctor of Philosophy

of

The Australian National University

Ziyad A. Alshaikh
Feb 2011

Notes on the Synthesis of Context A novel approach to model context inالعنوان:
software engineering

.Al Shaikh, Ziyad Aالمؤلف الرئيسي:

Boughton, Clive(Super)مؤلفين آخرين:

2011التاريخ الميلادي:

كانبيراموقع:

185 - 1الصفحات:

:MD 616120رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

Australian National Universityالجامعة:

College of Engineering and Computer Scienceالكلية:

أسترالياالدولة:

Dissertationsقواعد المعلومات:

صناعة البرمجيات ، برامج الحاسبات الالكترونية ، هندسة البرمجيات ، النمذجة ، النظممواضيع:
الخبيرة

https://search.mandumah.com/Record/616120رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/616120


www.manaraa.com

Notes on the Synthesis of Context

A novel approach to model context in software engineering

A thesis submitted for the degree of

Doctor of Philosophy

of

The Australian National University

Ziyad A. Alshaikh
Feb 2011



www.manaraa.com

c© Ziyad A. Alshaikh 2011

This document was produced using TEX , LATEX and BIBTEX



www.manaraa.com

I declare that the work in this thesis is entirely my own and that to the best of

my knowledge it does not contain any materials previously published or written by

another person except where otherwise indicated.

Ziyad A. Alshaikh

25 Feb 2011



www.manaraa.com



www.manaraa.com

Acknowledgements

I wish to thank my supervisor, Clive Boughton, for his continuous support and

guidance throughout the long process of producing my thesis. He kept a genuine

interest in the topic that I have chosen for my research, even when the work

appeared to be esoteric at times. My thanks also goes to Elisa Baniassad, my

supervisor and chair of panel, for her advice and constructive feedback on the

presentation of my work. Although she had joined my panel in the last year of

my candidature, she gave me valuable advice on methodology and style, which

helped to improve the quality of my work.

Since the start of my candidature I had the privilege to engage with many

people, in valuable discussions about my topic and other related areas of research.

Shayne Flint, as a member of my supervisory panel, had helped me shape my

thinking about software modelling and system thinking. His work and our

discussions during my early years of candidature, have been a source knowledge

and inspiration. Len Bass for his constructive feedback, who I met in early

2009, during my visit to the National Information and Communications Australia

(NICTA) in Sydney. Stephen Mellor, who on few occasions, provided me with

valuable comments on specific aspects of my work. Richard Gabriel who provided

me with valuable feedback on my application of the work of Christopher Alexander

to my research. Thanks also goes to all the anonymous reviewers who provided me

with valuable feedback on parts of my thesis that I submitted for publication.

Thanks goes to my fellow grad students, Agung Fatwanto, Normi Abu Bakar,

Zoe Brain, Alvin Teh, and Luke Nguyen-Hoan; who have shown true friendship and

support. Hassan Almari for the interesting discussions on software engineering

and almost everything else. Special thanks goes also to my office mate and

friend Srinivas Chemboli. He has always been a strong believer in my work,

and contributed to the development of my approach by providing new areas of

application that I did not explore.

I wish to acknowledge my sponsor King Abdulaziz City for Science and

Technology (KACST) for allowing me to pursue my interest in research. Special

thanks to Prince Turki Al Saud, Vice President for Research Institutes, who

supported my scholarship at the time when he was the Director of the Space

Research Institute, and for his continuous support since. Mohammed Almajed,

Directer of the National Satellite Technology Program, for his friendship and

support. Thanks also goes to the Saudi Arabian Embassy and Cultural Mission,

for providing logistical support for my scholarship. Ambassador Hassan Nazer

and Cultural Attache Ali Albishri, have always shown support both personally and



www.manaraa.com

through their team. Fahad Alotaibi and Abdulaziz Bin Taleb, from the Cultural

Mission, both have been good friends, and have administered my scholarship with

the help of their team, to provide me with academic advice throughout the process

of completing my thesis.

Finally, I like to thank my family. My parents who inspired me, and provided

invaluable advice when I needed. My son Abdualziz, too young to fully understand

why his daddy spends most of his time busy with work, spending long hours at

the office. I’m sure the day will come when he will realise that all I have done

was because I love him. Sharing all of this with me was my wife, Wala’a. She has

been always there for me when I needed her, she ensured that I have the time and

freedom to complete my dissertation, doing whatever she could to help me meet my

deadlines. Without her I would not have been able to make it. My love to you all.

vi



www.manaraa.com

Abstract

Context is often considered as a source for system change and variation. But the

term ‘context’ has been typically used to mean the act of setting boundaries and

setting system scope in software engineering. In this thesis, I challenge this view

by suggesting that context should be applied to imply system variation on all levels

of software (system) development. It constitutes as a more complex phenomena

of how the system interacts with the world. The suggested alternative approach

synthesises context in terms of influence and perception through context states.

Context states are represented by a sixteen context state matrix, I refer to

as The Context Dynamics Matrix (CDM). Context states are the result of two

dimensions of context, perception on the x-axis, and influence on the y-axis.

Analysts may identify context of a system using the CDM when they identify the

influence that an element exerts and assign their perception of how they identified

the influence. Both the influence and perception dimensions are modelled using

two models. First, the force model of influence, which identifies four levels of

influence that an element may apply, each level shows a different implication on

variation. Second, the knowledge model for perception, which shows five sources of

knowledge about the influence/context. Accordingly, an analyst may describe the

context of a system by matching the level of influence with the level of perception

to obtain the context state of a given system element. A context state may imply

a high or low level of variability, and a high or low level of perception. The use

of context states is independent from any modelling view of a system that either

describes functionality or system structure.

Because context states describe the context of a system independently from the

level/view in which they are described, it is possible to map the context states

to enrich the description of a given view. Accordingly, I show how to map context

states to functional description of systems by assigning context states to Data Flow

Diagrams (DFD). Processes and data flow are assigned context states that enrich

their description of the system, in terms of levels of variation that the context may

imply.

A proof-of-concept is provided to demonstrate how to apply context states to

the analysis of the requirements of a system from industry. The results of the

study show the viability of using context states to describe the context of system,

and support the argument to experiment further to evaluate the effectiveness of

context states in areas of system development not covered by my research.



www.manaraa.com



www.manaraa.com

Contents

Acknowledgements v

Abstract vii

I Introduction 1

1 Overview 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivation and research aim . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Preliminary research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 What is ‘context’? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Context in software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Context in other disciplines . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Synthesis of Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 37

II Contribution 39

3 Context Models 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Influence and perception . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 The Context Dynamics Matrix . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Context Mapping 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Mapping context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Mapping context to DFD . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 82



www.manaraa.com

CONTENTS

III Proof of Concept and Conclusion 85

5 Proof-of-Concept: Requirements of the Voter Mark-off System 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Design of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Summary and Conclusions 111

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Summary of contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Limitations of contribution . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Overall conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 Recommendations for future work . . . . . . . . . . . . . . . . . . . . 122

6.7 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

IV Appendices 131

A Proof-of-Concept: Context States of the Voter Mark-off System 133

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.2 Context states of context-diagram . . . . . . . . . . . . . . . . . . . . . 134

A.3 Context states of DFD-0 . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.4 Re-scoped context-diagram . . . . . . . . . . . . . . . . . . . . . . . . . 142

B Proof-of-Concept: Requirements of the Voter Mark-off System 145

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Bibliography 179

x



www.manaraa.com

List of Figures

1.1 Activity diagram showing structure of ideas and results of the thesis. 6

2.1 A DFD context-diagram of a satellite system. . . . . . . . . . . . . . . 18

2.2 Structure preserving shape example. . . . . . . . . . . . . . . . . . . . 31

3.1 The force model of influence . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 The knowledge model of perception . . . . . . . . . . . . . . . . . . . . 49

3.3 A matrix of Alexander’s fit/misfit model . . . . . . . . . . . . . . . . . 53

3.4 The 4x4 sixteen state Context Dynamics Matrix (CDM) . . . . . . . . 54

4.1 A DFD context-diagram of a satellite system. . . . . . . . . . . . . . . 61

4.2 Satellite system data flow level zero. . . . . . . . . . . . . . . . . . . . 63

4.3 The use of THICK BOUNDARY and LOCAL SYMMETRY to enhance the

design of the ornament. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Context states mapped to DFD. . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Context states assigned to the satellite system context-diagram . . . 74

4.6 Context states of context-diagram mapped to CDM. . . . . . . . . . . 76

4.7 Context state of telemetry command . . . . . . . . . . . . . . . . . . . 77

4.8 Context state of telemetry request . . . . . . . . . . . . . . . . . . . . 78

4.9 Context states of DFD-0 mapped to CDM. . . . . . . . . . . . . . . . . 79

4.10 The context of satellite system before adding data. . . . . . . . . . . . 81

5.1 The context-diagram of the voter marking system. . . . . . . . . . . . 90

5.2 A DFD-0 of the voter marking off system. . . . . . . . . . . . . . . . . 92

5.3 A DFD-0 after adding PO and PDA. . . . . . . . . . . . . . . . . . . . 93

5.4 The context-diagram after re-scope. . . . . . . . . . . . . . . . . . . . . 94

5.5 The context-diagram showing only process and terminators. . . . . . 95

5.6 Context-state enriched by context states. . . . . . . . . . . . . . . . . 96

5.7 Validating Voter before and after adding PO and PDA . . . . . . . . . 97

5.8 The context states assigned to the re-scoped context-diagram. . . . . 98

6.1 Standard scenario of the context of a system element. . . . . . . . . . 126

6.2 Context scenario showing shift from function to fit. . . . . . . . . . . 127

6.3 Context scenario showing a series of transitions . . . . . . . . . . . . 128



www.manaraa.com



www.manaraa.com

List of Tables

2.1 Key discriminators between abstractionism and contextualism by

Potts and Hsi [1997]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Comparison between the boundary approach and common sense

approach to context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Summary of themes on context from literature. . . . . . . . . . . . . . 34

5.1 DFD data dictionary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.1 Context state of the system as a whole . . . . . . . . . . . . . . . . . . 134

A.2 The context states of the context-diagram—second level. . . . . . . . 135

A.3 Context states of context-diagram—third level . . . . . . . . . . . . . 136

A.4 Context states of DFD-0—second level. . . . . . . . . . . . . . . . . . 139

A.5 Context states of DFD-0—third level. . . . . . . . . . . . . . . . . . . 140

A.6 The context states of the context-diagram—second level. . . . . . . . 142

A.7 Context states of re-scoped context-diagram—third level . . . . . . . 143



www.manaraa.com



www.manaraa.com

Part

I
Introduction



www.manaraa.com



www.manaraa.com

Chapter

1
Overview

[N]eglect of context is the greatest single disaster which philosophic thinking

can incur.

John Dewey (1931)

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivation and research aim . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Part I - Introduction . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Part II - Contribution . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.3 Part III - Discussion and Conclusion . . . . . . . . . . . . . . 7

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . 8



www.manaraa.com

Chapter 1: Overview

1.1 Introduction

This dissertation is submitted for the degree of Doctor of Philosophy of the

Australian National University. It describes exploratory research on the funda-

mentals of software/system variation, its sources and implications, on the level

of requirements. The result of the research is a novel approach to analyse and

represent context in software engineering, with application to systems in general.

As an introduction, I provide a brief overview of main parts of the research,

supported by guiding information to navigate through the thesis. I conclude with

a list of work published during the project and a summary of contributions made

to engineering research and practice.

1.2 Motivation and research aim

The initial motivation for conducting this research is to explain sources of

software/system variety across different organisational goals, different disciplinary

approaches, cultural choices, and within personal preferences. In the spirit of the

dichotomy set by Simon [1996], as engineers, we are not primarily interested in

the knowledge of how the world works, we are more concerned with the knowledge

of making a working world. Therefore, we have to enquire about the nature of

the world of our artefacts. One challenging goal, in software development, is to

maintain a complete account of system requirements. For example, how to avoid

system failures as a result of lack of knowledge? How to take advantage of system

opportunities, manifested in customers’ desires and aspirations? These concerns

are summarised by Glass’s Law:

Requirements deficiencies are the prime cause of project failures.

[Endres and Rombach 2003, Law L1, pp16-17]

The research is also motivated by the growing interest in product line

architectures. In which the aim is to manage a variety of needs within a

family of products, while maintaining economical value and achieving sustainable

growth. My preliminary research reported in Chapter 2 shows that the source of

sustainable functionality of a successful system, lies in its ability to respond to its

context. This is summarised by Conway’s Law:

A system reflects the organisational structure that built it.

[Endres and Rombach 2003, Law L16, pp81-82].

4



www.manaraa.com

1.3 Thesis scope

Further research reported in Chapter 2 shows that context as a concept, has

not received enough theoretical distillation in software engineering. This is

exemplified in the different views by software practitioners about the use and

meaning of context on different levels of software development—requirements,

architecture, and design. After reviewing views and theories from the literature

dealing exclusively with the concept of context—literature from various fields of

knowledge: architecture and urban design, artificial intelligence, anthropology,

linguistics, philosophy—the need emerged for a synthesis of context as a separate

system concern in software analysis.

This preliminary work has resulted in the following research aim:

‘to present a model of context that shows when to vary and when not to

vary a system. Such a model should indicate the opportunity to vary the

system when the context reflects soft demands, and indicate when it is not

possible to vary the system because the context has strict demands. The

model should also indicate when strict demands are based on conjecture,

and when soft demands are based on strong evidence. The model should

show different degrees of variation that the system may have through

context.’

1.3 Thesis scope

The scope of this thesis is the development, representation, and demonstration of

the theoretical framework of context within software engineering requirements.

While the broader applicability of the contextual framework to other areas of

software development is discussed, the evaluation of the approach within these

areas is beyond the scope of this thesis.

The research on context presented here, have general application to human-

based systems. Some reference is made to the implication of the work on human-

based systems, but demonstrating or evaluating such implications are beyond the

scope of this research.

1.4 Thesis structure

Figure 1.1 shows the organisation structure of the thesis depicted in a Unified

Modelling Language (UML) activity diagram [Mellor and Balcer 2002]. The thesis

is organised in three parts, represented in the activity diagram with vertical lines,

5



www.manaraa.com

Chapter 1: Overview

Figure 1.1 – Activity diagram depicting the structure and the flow of ideas and results

throughout this thesis.

6



www.manaraa.com

1.4 Thesis structure

each part with more than one chapter. Chapters are represented as activities (grey

rounded boxes), flow of ideas and conclusions between chapters are represented

in arrows and key research contributions are represented by objects (white square

boxes).

In the following sections I provide an overview of the thesis with a summary

of the findings of each chapter. A more detailed overview of the main research

contributions is obtained by reading the introduction of Chapters 3–4 with the

conclusion of Chapter 6. A more concise overview of the thesis could also be

obtained by reading the preface.

1.4.1 Part I - Introduction

The first part of the thesis (Part I) is formed by two chapters: Chapter 1 and

Chapter 2. I present the thesis aim and motivation in this chapter, Chapter 1.

Preliminary research is discussed in Chapter 2. In which initial observations

leading to realise the need to explain system variety by modelling context is

presented. These observations were inspired by the work of Alexander [1964;

1979; 2002] on context and form, Dilley [1999], Scharfstein [1989] on the problem

of context, and the discussions of context and patterns in Buschmann et al. [2007].

The collection of ideas thereof, led to the conclusion that a synthesis of context

is required in software engineering, expressing risk imposed and opportunities

offered within the context of each system.

1.4.2 Part II - Contribution

The second part of the thesis (Part II) is formed by two chapters, Chapter 3

and Chapter 4. Chapter 3 discusses context on the level of individual elements,

using the Context Dynamics Matrix (CDM), a novel approach to model context.

Chapter 4 discusses context of individual elements within a system using Data

Flow Diagrams (DFD). CDM is used to enrich the context representation of system

elements’ contexts as represented by DFD.

1.4.3 Part III - Discussion and Conclusion

The third part (Part III) is formed by two chapters. The first chapter, Chapter 5,

is the proof-of-concept that describes an industrial case-study to demonstrate the

efficacy of the approach. The second chapter, Chapter 6, I summarise the work

presented in the thesis and present a survey of related work. I also discuss

7



www.manaraa.com

Chapter 1: Overview

limitations and propose future research directions to evaluate and further develop

the use of context in software engineering.

1.5 Publications

The contributions made by this thesis are based on the results of preliminary

research, some are presented in Chapter 2, and published in the following refereed

conference papers.

• Z. Alshaikh and C. Boughton. The Context Dynamics Matrix(CDM): An

Approach to Modelling Context. 16th Asia Pacific Software Engineering

Conference (APSEC 2009), 2009.

• Z. Alshaikh and C. Boughton. Context centralised method for software

architecture: A pattern evolution approach. In 3rd International Conference

on Software and Data Technologies (ICSOFT2008), 2008.

1.6 Summary of contributions

The research reported by this thesis makes the following contributions to the

existing knowledge of system and software development.

• A synthesis of context. A review of context in literature, produces a

synthesis of context as two dimensions: influence and perception. The

synthesis is based on five themes drawn from the literature that sets the

plan for the following chapters to represent the context of systems.

• Context models. A novel approach to synthesise and represent the context

of elements in terms of context states using CDM. The context synthesis

introduced in Chapter 2, is expanded by a force model of influence, and

a knowledge model of perception. Both models of context are represented

in CDM, which implies sources of system variation when applied to soft-

ware/system requirements.

• Context mapping. To represent the context of systems, the context states

of the CDM are mapped to the description of requirements using DFD. The

functional view that DFD represents is extended by context states. Thus it is

possible for analysts to represent the context of a system as represented by

requirement statements, through a context enriched DFD model.

8



www.manaraa.com

Chapter

2
Background

In analysis, something that we want to understand is first taken apart. In

synthesis, that which we want to understand is first identified as a part of

one or more larger systems.

In the second step of analysis, an effort is made to understand the behavior

of each part of a system is taken separately. In the second step of synthesis,

an effort is made to understand the function of the larger system(s) of the

which the whole is part.

In analysis, the understanding of the parts of the system to be understood is

then aggregated in effort to explain the behavior or properties of the whole.

In synthesis, the understanding of the larger containing system is then

disaggregated to identify the role or function of the system to be understood.

Ackoff [1999]

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Preliminary research . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 What is ‘context’? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Context in software . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Context in requirements . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Context in architecture . . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Context in design patterns and pattern language . . . . . . 24

2.5 Context in other disciplines . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Context as a problem . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Context as a solution . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.3 Context as form . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Synthesis of Context . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Themes from literature on context . . . . . . . . . . . . . . . 33



www.manaraa.com

Chapter 2: Background

2.6.2 The emergence of influence and perception . . . . . . . . . . 36

2.7 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . 37

10

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Bibliography

R. Ackoff. Re-creating Corporation: A Design of Organization for the 21
st Century. Oxford

University Press, 1999.

C. Alexander. The determination of components for an indian village. In Conference on

design methods, pages 83–114, 1963.

C. Alexander. Notes on the Synthesis of Form. Harvard University Press, 1964.

C. Alexander. The Timeless Way of Building. Oxford University Press, 1979.

C. Alexander. The origins of pattern theory: The future of the theory, and the generation

of a living world. IEEE Software, pages 71–82, September/October 1999.

C. Alexander. The Phenomenon of Life, volume One of The Nature of Order. The Center for

Environmental Structure, Berkeley, California, 2001.

C. Alexander. The Process of Creating Life, volume Two of The Nature of Order. The Center

for Environmental Structure, Berkeley, California, 2002.

C. Alexander, S. Ishikawa, M. S. with Max Jacobson, I. Fiksdahl-King, and S. Angel. A

pattern language : towns, buildings, construction. Oxford University Press, 1977.

R. Ali, F. Dalpiaz, and P. Giorgini. Enterprise, Business-Process and Information Systems

Modeling, volume 29 of Lecture Notes in Business Information Processing, chapter A

Goal Modeling Framework for Self-contextualizable Software, pages 326–338. Springer-

Verlag Berlin Heidelberg, April 2009.

Z. Alshaikh. Space Mission Operations: An Approach to a Unified Satellite Model in

xtUML. Technical report, The Australian National University (ANU), July 2006.

Z. Alshaikh and C. Boughton. The Context Dynamics Matrix (CDM): An Approach to

Modelling Context. In 16th Asia Pecific Software Engineering Conference (APSEC 2009),

2009.

V. Basili, G. Caldiera, and H. Rombach. Encyclopedia of Software Engineering, volume 2,

chapter Goal Question Metric Paradigm, pages 528–532. Addison Wesley, 1994.

L. Bass, P. Clements, and R. Kazman. Software architecture in practice. Addison-Wesley,

MA, USA, 2nd edition, 2003.

L. Bass, J. Bergey, P. Clements, P. Merson, I. Ozkaya, and R. Sangwan. A comparison of

requirements specification methods from a software architecture perspective. Technical

report, Software Engineering Institute , Carnegie Mellon, 2006.

L. Bass, R. Nord, W. Wood, D. Zubrow, and I. Ozkaya. Analysis of Architecture Evaluation

Data. Journal of Systems and Software, 81:1443–1455, February 2008.

Notes on the Synthesis of Context A novel approach to model context inالعنوان:
software engineering

.Al Shaikh, Ziyad Aالمؤلف الرئيسي:

Boughton, Clive(Super)مؤلفين آخرين:

2011التاريخ الميلادي:

كانبيراموقع:

185 - 1الصفحات:

:MD 616120رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

Australian National Universityالجامعة:

College of Engineering and Computer Scienceالكلية:

أسترالياالدولة:

Dissertationsقواعد المعلومات:

صناعة البرمجيات ، برامج الحاسبات الالكترونية ، هندسة البرمجيات ، النمذجة ، النظممواضيع:
الخبيرة

https://search.mandumah.com/Record/616120رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/616120


www.manaraa.com

Bibliography

R. Ackoff. Re-creating Corporation: A Design of Organization for the 21
st Century. Oxford

University Press, 1999.

C. Alexander. The determination of components for an indian village. In Conference on

design methods, pages 83–114, 1963.

C. Alexander. Notes on the Synthesis of Form. Harvard University Press, 1964.

C. Alexander. The Timeless Way of Building. Oxford University Press, 1979.

C. Alexander. The origins of pattern theory: The future of the theory, and the generation

of a living world. IEEE Software, pages 71–82, September/October 1999.

C. Alexander. The Phenomenon of Life, volume One of The Nature of Order. The Center for

Environmental Structure, Berkeley, California, 2001.

C. Alexander. The Process of Creating Life, volume Two of The Nature of Order. The Center

for Environmental Structure, Berkeley, California, 2002.

C. Alexander, S. Ishikawa, M. S. with Max Jacobson, I. Fiksdahl-King, and S. Angel. A

pattern language : towns, buildings, construction. Oxford University Press, 1977.

R. Ali, F. Dalpiaz, and P. Giorgini. Enterprise, Business-Process and Information Systems

Modeling, volume 29 of Lecture Notes in Business Information Processing, chapter A

Goal Modeling Framework for Self-contextualizable Software, pages 326–338. Springer-

Verlag Berlin Heidelberg, April 2009.

Z. Alshaikh. Space Mission Operations: An Approach to a Unified Satellite Model in

xtUML. Technical report, The Australian National University (ANU), July 2006.

Z. Alshaikh and C. Boughton. The Context Dynamics Matrix (CDM): An Approach to

Modelling Context. In 16th Asia Pecific Software Engineering Conference (APSEC 2009),

2009.

V. Basili, G. Caldiera, and H. Rombach. Encyclopedia of Software Engineering, volume 2,

chapter Goal Question Metric Paradigm, pages 528–532. Addison Wesley, 1994.

L. Bass, P. Clements, and R. Kazman. Software architecture in practice. Addison-Wesley,

MA, USA, 2nd edition, 2003.

L. Bass, J. Bergey, P. Clements, P. Merson, I. Ozkaya, and R. Sangwan. A comparison of

requirements specification methods from a software architecture perspective. Technical

report, Software Engineering Institute , Carnegie Mellon, 2006.

L. Bass, R. Nord, W. Wood, D. Zubrow, and I. Ozkaya. Analysis of Architecture Evaluation

Data. Journal of Systems and Software, 81:1443–1455, February 2008.



www.manaraa.com

BIBLIOGRAPHY

M. Beneceretti, P. Bouquet, and C. Ghidini. On the dimensions of context dependence:

Partiality, approximation, and perspective. In Modeling and Using Context. Springer-

Verlag, Berlin, 2001.

P. Bengtsson and J. Bosch. Scenario-based software architecture reengineering. In ICSR

’98: Proceedings of the 5th International Conference on Software Reuse, page 308,

Washington, DC, USA, 1998. IEEE Computer Society. ISBN 0-8186-8377-5.

D. M. Berry and E. Kamsties. Ambiguity in requirements specification. In J. C. S.

do Prado Leite and J. H. Doorn, editors, Perspectives on Requirements Engineering,

chapter 2, pages 7–44. Kluwer Academic Publishers, 2004.

D. M. Berry and E. Kamsties. The syntactically dangerous all and plural in specifications.

IEEE Software, 1:55–57, January/February 2005.

B. Boehm and V. R. Basili. Software Defect Reduction Top 10 List. IEEE Software, January

2001.

J. Bosch. Design & use of software architectures. Addison-Wesley, London, 2000.

H. d. Bruin, J. C. v. Vliet, and Z. Baida. Documenting and analyzing a context-sensitive

design space. In WICSA 3: Proceedings of the IFIP 17th World Computer Congress - TC2

Stream / 3rd IEEE/IFIP Conference on Software Architecture, pages 127–141, Deventer,

The Netherlands, The Netherlands, 2002. Kluwer, B.V. ISBN 1-4020-7176-0.

F. Bübl. Introducing Context-Based Constraints. In Lecture Notes In Computer Science,

volume 2306, pages 249 – 263. Springer-Verlag, 2002.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented

Software Architecture A System of Patterns. John Wiley & Sons, 1996.

F. Buschmann, K. Henney, and D. C. Schmidt. Software-Oriented Software Architecture On

Patterns and Pattern Languages, volume Five. John Wiley & Sons, Ltd, 2007.

H. Cappelen. Semantics and pragmatics: Some central issues. In G. Preyer and G. Peter,

editors, Context-Sensitivity and Semantic Minimalism : New Essays on Semantics and

Pragmatics, pages 3–22. Oxford University Press, 2007.

R. Carnap. Introduction to semantics. Harvard University Press, 1942.

S. Chemboli, L. Kane, and L. Johns-Boast. Using moodle to easily develop and deliver high

quality courses. In MoodleMoot, 2010.

A. Classen, P. Heymans, R. Laney, B. Nuseibeh, and T. T. Tun. On the Structure of Problem

Variability: From Feature Diagrams to Problem Frames. In K. Pohl, P. Heymans, K.-C.

Kang, and A. Metzger, editors, First International Workshop on Variability Modelling of

Software-intensive Systems, pages 109–117. The Irish Software Engineering Research

Centre, 2007.

180



www.manaraa.com

BIBLIOGRAPHY

A. Classen, P. Heymans, and P.-Y. Schobbens. What’s in a feature: a requirements

engineering perspective. In FASE’08/ETAPS’08: Proceedings of the Theory and practice

of software, 11th international conference on Fundamental approaches to software

engineering, pages 16–30, Berlin, Heidelberg, 2008. Springer-Verlag.

P. Clements, R. Kazman, and M. Klein. Evaluating Software Architectures: Methods and

Case Studies. Addison-Wesley, 2002.

J. O. Coplien and N. Harrison. Organizational Patterns of Agile Software Development.

Pearson Prentice Hall, 2004.

J. Culler. Literary Theory. A Brief Insight. Sterling, 2009.

K. Czarnecki and M. Antkiewicz. Mapping features to models: A template approach based

on superimposed variants. In GPCE 2005 - Generative Programming and Component

Enginering. 4th International Conference, pages 422–437. Springer, 2005.

A. Dearden and J. Finlay. Pattern Languages in HCI: A Critical Review. Human-Computer

Interaction, 21(1):49–102, 2006.

S. Deelstra, M. Sinnema, and J. Bosch. Experiences in Software Product Families: Problems

and Issues During Product Derivation, volume 3154, pages 120–122. Springer Berlin /

Heidelberg, 2004.

T. DeMarco. Structured Analysis and System Specification. Yourdon Press Upper Saddle

River, NJ, USA, 1979.

J. Derrida. Of Grammatology. Johns Hopkins University Press, 1998.

J. Dewey. University of California Publications on Philosophy, volume 12, chapter Context

and Thought, pages 203–224. University of California Press, Berkeley, 1931.

A. K. Dey. Understanding and using context. Personal and Ubiquitous Computing, 5:4–7,

2001.

T. Dijk. Society and discourse: how social contexts influence text and talk. Cambridge

University Press, 2009.

R. Dilley. The Problem of Context. Berghan Books, 1999.

A. Endres and D. Rombach. A Handbook of Software and System Engineering: Empirical

Observations, Laws and Theories. Pearson Education Limited, 2003.

G. H. Fairbanks. Just Enough Software Architecture: A Risk-Driven Approach. Marshall

& Brainerd, 2010.

S. Ferber, J. Haag, and J. Savolainen. Feature interaction and dependencies: Modeling

features for reengineering a legacy product line. In G. Chastek, editor, Software Product

Lines, volume 2379 of Lecture Notes in Computer Science, pages 37–60. Springer Berlin

/ Heidelberg, 2002.

181



www.manaraa.com

BIBLIOGRAPHY

A. Fetzer. Recontextualizing context: grammaticality meets appropriateness. John

Benjamins Publishing Company, Amsterdam, 2004.

D. Fey, R. Fajta, and A. Boros. Feature Modeling: A Meta-Model to Enhance Usability and

Usefulness. In G. Chastek, editor, Software Product Lines, volume 2379 of Lecture Notes

in Computer Science, pages 198–216. Springer Berlin / Heidelberg, 2002.

P. Feyerabend. Against Method. Verso, London; New York, 1988.

M. Foucault. Archaeology of knowledge. Routledge classics. Routledge, 2002.

M. Fowler. Analysis patterns: reusable object models. Boston : Addison Wesley, 1997.

E. Gamma and K. Beck. JUnit A Cook’s Tour, last checked April 2010. URL {http:

//junit.sourceforge.net/doc/cookstour/cookstour.htm}.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns Elements of Reusable

Object-Oriented Software. Addison Wesley, 1994.

D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch or Why it’s hard to build

systems out of existing parts. IEEE Software, 12(6):17–26, November 1995.

S. V. Gheorghita, M. Palkovic, J. Hamers, A. Vandecappelle, S. Mamagkakis, T. Basten,

L. Eeckhout, H. Corporaal, F. Catthoor, F. Vandeputte, and K. D. Bosschere. System-

scenario-based design of dynamic embedded systems. ACM Trans. Des. Autom. Electron.

Syst., 14(1):1–45, 2009. ISSN 1084-4309. doi: http://doi.acm.org/10.1145/1455229.

1455232.

E. Goffman. Frame analysis: an essay on the organization of experience. Har-

mondsworth:Penguin, 1975.

C. Goodwin and A. Duranti. Rethinking context: an introduction. In Rethinking Context:

Language as an Interactive Phenomenon. Cambridge University Press, 1992.

M. L. Griss, J. Favaro, and M. d. Alessandro. Integrating Feature Modeling with the RSEB.

In ICSR ’98: Proceedings of the 5th International Conference on Software Reuse, page 76,

Washington, DC, USA, 1998. IEEE Computer Society.

B. Grne. Conceptual patterns. In Proceedings of the 13th Annual IEEE International

Symposium and Workshop on Engineering of Computer Based Systems (ECBSı́06), 2006.

R. Guha and J. McCarthy. Varieties of contexts. In Modeling and Using Context, page

164:177. Springer-Verlag, Berlin, 2003.

J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L. Rapanotti. Relating software

requirements and architectures using problem frames. In Proceedings of IEEE Inter-

national Requirements Engineering Conference (RE’02, pages 137–144. IEEE Computer

Society Press, 2002.

J. G. Hall, L. Rapanotti, and M. A. Jackson. Problem Oriented Software Engineering: solv-

ing the Package Router Control problem. IEEE Transactions on Software Engineering,

34(2):226 – 241, March-April 2008.

182



www.manaraa.com

BIBLIOGRAPHY

M. Halliday. Explorations in the functions of language. Explorations in Language Study.

Elsevier North-Holland, 1977.

G. Halmans and K. Pohl. Communicating the Variability of a Software-Product Family to

Customers. Software and Systems Modeling, 2:15–36, 2003.

P. Harvey. Culture and context: The effects of visibilty. In The problem of context. Berghan

Books, 1999.

D. J. Hatley and I. A. Pirbhai. Strategies for Real-Time System Specification. Dorset House,

1988.

M. Jackson. The world and the machine. In ICSE ’95: Proceedings of the 17th international

conference on Software engineering, pages 283–292, New York, NY, USA, 1995a. ACM.

ISBN 0-89791-708-1. doi: http://doi.acm.org/10.1145/225014.225041.

M. Jackson. Software Requirements and Specifications: A Lexicon of Practice, Principles

and Prejudices. ACM Press, 1995b.

M. Jackson. Problem Frames: Analysing and Structuring Software Development Problems.

Addison-Wesley, 2001.

B. E. John, L. Bass, E. Golden, and P. Stoll. A Responsibility-Based Pattern Language for

Usability-Supporting Architectural Patterns. In EICS ’09: Proceedings of the 1st ACM

SIGCHI Symposium on Engineering Interactive Computing Systems, pages 3–12, New

York, NY, USA, 2009. ACM. ISBN 978-1-60558-600-7. doi: http://doi.acm.org/10.1145/

1570433.1570437.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-Oriented

Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania

15213, November 1990.

K. C. Kang, J. Lee, and P. Donohoe. Feature-Oriented Product Line Engineering. IEEE

Software, July/August 2002.

D. Kaplan. Demonstratives. In J. Almog, J. Perry, and H. Wettstein, editors, Themes from

Kaplan. Oxford University Press, 1989.

R. Kazman and L. Bass. Categorizing Business Goals for Software Architectures. Tech-

nical Report CMU/SEI-2005-TR-021, Software Engineering Institute, Carnegie Mellon,

December 2005.

R. Kazman, L. Bass, M. Webb, and G. Abowd. SAAM: a method for analyzing the properties

of software architectures. In ICSE ’94: Proceedings of the 16th international conference

on Software engineering, pages 81–90, Los Alamitos, CA, USA, 1994. IEEE Computer

Society Press. ISBN 0-8186-5855-X.

R. Kazman, M. Klein, and P. Clements. ATAM: Method for Architecture Evaluation. Tech-

nical Report CMU/SEI-2000-TR-004, The Software Engineering Institute , Carnegie

Mellon University, Pittsburgh, PA 15213, August 2000.

183



www.manaraa.com

BIBLIOGRAPHY

R. Kazman, L. Bass, M. Klein, T. Lattanze, and L. Northrop. A basis for analyzing software

architecture analysis methods. Software Quality Journal, 13:329–355, 2005.

J. Kristeva. Psychoanalysis and the polis. In G. L. Ormiston and A. D. Schrift, editors,

Transforming the hermeneutic context, chapter 4, pages 89–105. State University of New

York Press, 1990.

P. Kruchten. The context of software development, July 2009. URL http://pkruchten.

wordpress.com/2009/07/22/the-context-of-software-development.

P. Lago and H. van Vliet. Explicit assumptions enrich architectural models. In Proceedings

27th International Conference on Software Engineering, ICSE 2005, pages 206–214, May

2005.

R. Laney, L. Barroca, M. Jackson, and B. Nuseibeh. Composing requirements using

problem frames. In Requirements Engineering Conference, 2004. Proceedings. 12th IEEE

International, pages 122–131, 2004.

K. Lee and K. C. Kang. Feature dependency analysis for product line component design. In

J. Bosch and C. Krueger, editors, Software Reuse: Methods, Techniques and Tools, volume

3107 of Lecture Notes in Computer Science, pages 69–85. Springer Berlin / Heidelberg,

2004.

S. J. Mellor and M. J. Balcer. Executable UML A foundation for Model-Driven Architecture.

The Addison-Wesley Object Technology Series, 2002.

B. Morris. Context and interpretation : Reflections on nyau rituals in malawi. In The

problem of context. Berghan Books, 1999.

D. A. Norman. The psychology of everyday things. Basic Books, 1988.

D. A. Norman. Emotional design: why we love (or hate) everyday things. Basic Books, 2005.

D. A. Norman and S. W. Draper, editors. User Centered System Design. Lawrence Erlbaum

Associates, Publishers, Hillsdale, New Jersey London, 1986.

W. E. Novak and L. Levine. Success in acquisition: Using archetypes to beat the odds.

Technical Report CMU/SEI-2010-TR-016, Software Engineering Institute, September

2010.

I. Ozkaya, L. Bass, R. L. Nord, and R. S. Sangwan. Making practical use of quality attribute

information. IEEE Software, 25:25–33, 2008.

K. Popper. The Logic of Scientific Discovery. Routledge, London and New York, 2006.

C. Potts. Using schematic scenarios to understand user needs. In DIS ’95: Proceedings of

the 1st conference on Designing interactive systems, pages 247–256, New York, NY, USA,

1995. ACM. ISBN 0-89791-673-5. doi: http://doi.acm.org/10.1145/225434.225462.

C. Potts and I. Hsi. Abstraction and context in requirements engineering: Toward a

synthesis. Annals of Software Engineering, 3:23–61, 1997.

184



www.manaraa.com

BIBLIOGRAPHY

J. Ralyté, C. Rolland, and V. Plihon. Method enhancement with scenario based techniques.

In M. Jarke and A. Oberweis, editors, Advanced Information Systems Engineering,

volume 1626 of Lecture Notes in Computer Science, pages 103–118. Springer Berlin /

Heidelberg, 2010. URL http://dx.doi.org/10.1007/3-540-48738-7_9.

F. Recanati. Literal Meaning. Cambridge University Press, 2004.

B. A. Scharfstein. The Dilemma of Context. NYU Press, 1989.

H. A. Simon. The Sciences of the Artificial. MIT Press, Third edition, 1996.

A. Skjeltorp and A. V. Belushkin. Forces, Growth and Form in Soft Condensed Matter: At

the Interface between Physics and Biology. Springer, 2004.

M. Strathern. Out of context: The persuasive fictions of anthropology. Current Anthropol-

ogy, 28:251–281, 1987.

R. N. Taylor, N. Medvidović, and E. M. Dashofy. Software Architecture: foundations, theory,

and practice. John Wiley, 2010.

D. W. Thompson. On growth and form. Cambridge University Press, 1966.

T. A. van Dijk. Discourse and Context: A Sociocognitive Approach. Cambridge University

Press, 2008.

H. C. A. van Tilborg, editor. Encyclopedia of cryptography and security. Springer, 2005.

J. Ven, A. Jansen, J. Nijhuis, and J. Bosch. Design decisions: The bridge between rationale

and architecture. In A. Dutoit, R. McCall, I. Mistrı́k, and B. Paech, editors, Rationale

Management in Software Engineering, pages 329–348. Springer Berlin Heidelberg, 2006.

P. T. Ward and S. J. Mellor. Structured Development for Real-time Systems. Yourdon Press,

1986.

K. E. Wiegers. Software Requirements. Microsoft Press, 2003.

L. Wittgenstein. Philosophical investigations. Oxford, Blackwell, 1974.

R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and B. Wood. Attribute-

driven design (ADD), version 2.0. Technical Report CMU/SEI-2006-TR-023, Software

Engineering Institute , Carnegie Mellon University, November 2006.

E. Yourdon. Modern Structured Analysis. Prentice-Hall International Editions, 1989.

Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and J. Leite. From goals to high-

variability software design. In A. An, S. Matwin, Z. Ras, and D. Slezak, editors,

Foundations of Intelligent Systems, volume 4994 of Lecture Notes in Computer Science,

pages 1–16. Springer Berlin / Heidelberg, 2008.

185

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Notes on the Synthesis of Context

A novel approach to model context in software engineering

A thesis submitted for the degree of

Doctor of Philosophy

of

The Australian National University

Ziyad A. Alshaikh
Feb 2011

Notes on the Synthesis of Context A novel approach to model context inالعنوان:
software engineering

.Al Shaikh, Ziyad Aالمؤلف الرئيسي:

Boughton, Clive(Super)مؤلفين آخرين:

2011التاريخ الميلادي:

كانبيراموقع:

185 - 1الصفحات:

:MD 616120رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

Australian National Universityالجامعة:

College of Engineering and Computer Scienceالكلية:

أسترالياالدولة:

Dissertationsقواعد المعلومات:

صناعة البرمجيات ، برامج الحاسبات الالكترونية ، هندسة البرمجيات ، النمذجة ، النظممواضيع:
الخبيرة

https://search.mandumah.com/Record/616120رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/616120


www.manaraa.com

Notes on the Synthesis of Context

A novel approach to model context in software engineering

A thesis submitted for the degree of

Doctor of Philosophy

of

The Australian National University

Ziyad A. Alshaikh
Feb 2011

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

